


Lecture Notes in Computer Science 4750
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Marina L. Gavrilova C.J. Kenneth Tan (Eds.)

Transactions on
Computational Science I

13



Editors-in-Chief

Marina L. Gavrilova
University of Calgary
Department of Computer Science
2500 University Drive N.W.
Calgary, AB, T2N1N4, Canada
E-mail: marina@cpsc.ucalgary.ca

C.J. Kenneth Tan
OptimaNumerics Ltd.
Cathedral House
23-31 Waring Street
Belfast BT1 2DX, UK
E-mail: cjtan@optimanumerics.com

Library of Congress Control Number: 2008924861

CR Subject Classification (1998): F, D, C.2-3, G, E.1-2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743 (Lecture Notes in Computer Science)
ISSN 1866-4733 (Transactions on Computational Science)
ISBN-10 3-540-79298-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79298-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11530664 06/3180 5 4 3 2 1 0



LNCS Transactions on Computational Science 
 
 

Computational science, an emerging and increasingly vital field, is now widely 
recognized as an integral part of scientific and technical investigations, affecting 
researchers and practitioners in areas ranging from aerospace and automotive research 
to biochemistry, electronics, geosciences, mathematics, and physics. Computer 
systems research and the exploitation of applied research naturally complement each 
other. The increased complexity of many challenges in computational science 
demands the use of supercomputing, parallel processing, sophisticated algorithms, 
and advanced system software and architecture. It is therefore invaluable to have 
input by systems research experts in applied computational science research. 

Transactions on Computational Science focuses on original high-quality research 
in the realm of computational science in parallel and distributed environments, also 
encompassing the underlying theoretical foundations and the applications of large-
scale computation. The journal offers practitioners and researchers the possibility to 
share computational techniques and solutions in this area, to identify new issues, and 
to shape future directions for research, and it enables industrial users to apply leading-
edge, large-scale, high-performance computational methods. 

In addition to addressing various research and application issues, the journal aims 
to present material that is validated – crucial to the application and advancement of 
the research conducted in academic and industrial settings. In this spirit, the journal 
focuses on publications that present results and computational techniques that are 
verifiable.  

 

Scope 

 
The scope of the journal includes, but is not limited to, the following computational 
methods and applications: 

 
• Aeronautics and Aerospace  
• Astrophysics  
• Bioinformatics  
• Climate and Weather Modeling  
• Communication and Data Networks  
• Compilers and Operating Systems  
• Computer Graphics  
• Computational Biology  
• Computational Chemistry  
• Computational Finance and Econometrics  
• Computational Fluid Dynamics  
• Computational Geometry  
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• Computational Number Theory  
• Computational Physics  
• Data Storage and Information Retrieval 
• Data Mining and Data Warehousing  
• Grid Computing  
• Hardware/Software Co-design  
• High-Energy Physics  
• High-Performance Computing  
• Numerical and Scientific Computing  
• Parallel and Distributed Computing  
• Reconfigurable Hardware  
• Scientific Visualization 
• Supercomputing  
• System-on-Chip Design and Engineering  

 



 

Preface 

 
 

We would like to present, with great pleasure, the inaugural volume of a new 
scholarly journal, Transactions on Computational Science. This journal is part of the 
Springer series Lecture Notes in Computer Science, and is devoted to the gamut of 
computational science issues, from theoretical aspects to application-dependent 
studies and the validation of emerging technologies. 

This new journal was envisioned and founded to represent the growing needs of 
computational science as an emerging and increasingly vital field, now widely 
recognized as an integral part of scientific and technical investigations. Its mission is 
to become a voice of the computational science community, addressing researchers 
and practitioners in areas ranging from aerospace to biochemistry, from electronics to 
geosciences, from mathematics to software architecture, presenting verifiable 
computational methods, findings, and solutions. 

Transactions on Computational Science focuses on original high-quality research in 
the realm of computational science in parallel and distributed environments, 
encompassing facilitation of the theoretical foundations and the applications of large-
scale computations to massive data processing. The Journal is intended as a forum for 
practitioners and researchers to share computational techniques and solutions in the 
area, to identify new issues and to shape future directions for research, while industrial 
users may apply techniques of leading-edge, large-scale, high-performance 
computational methods. 

This inaugural volume is devoted to computer systems research and the application 
of such research, which naturally complement each other. In this spirit, the volume is 
divided into two parts, with the first devoted to core computational science issues faced 
by researchers and industries today, and the second focusing on the development of 
novel computational techniques that are versatile and verifiable in a wide range of 
applications.  

Part 1 of this volume comprises five manuscripts, connected by a unifying theme: 
information systems design. Specifically, the presented articles can be categorized 
into the following groups: 

 
      -   Data flow analysis 
      -   Building fuzzy interference systems 
      -   Multi-agent systems design 
      -   Models for curve fitting 
      -   Network map topology representation 
 
These articles exemplify the analysis and exploration of complex computational 

models and data sets from various domains. They provide invaluable insights into the  
studied problems and offer convincing case studies and experimental analysis. 

Part 2 is concerned with the specific computational science problems in the areas 
of data processing and their industrial applications. The four papers comprising this 
part present original research in the following areas: 
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   -     Missing value imputation techniques in data mining 
- Normalization techniques for electrocardiogram data analysis  
- A unified method for solving laminar forced convection problems  
- A new versatile technique for solving non-linear stochastic differential 

equations 
 
Each article provides an example of a concrete industrial application or a case 

study of the presented methodology to amplify the impact of the contribution. 
Many scientists and institutions have contributed to the creation and the success of 

the computational science community. We are very thankful to everybody within that 
community who supported the idea of creating a new LNCS journal subline – the 
Transactions on Computational Science. We are certain that this very first issue will 
be followed by many others, reporting new developments in the computational 
science field. This issue would not have been possible without the great support of the 
Editorial Board members, and we would like to express our sincere thanks to all of 
them. We would also like to express our gratitude to the LNCS editorial staff of 
Springer, in particular Alfred Hofmann and Ursula Barth, who supported us at every 
stage of the project. Throughout preparation of this volume the Editors were 
supported by various research programs and funds, including NSERC funding. 

It is our hope that this fine collection of articles will be a valuable resource for 
Transactions on Computational Science readers and will stimulate further research 
into the vibrant area of computational science. 

 
 

March 2008                                                                                  Marina L. Gavrilova 
         C.J. Kenneth Tan 
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Formalization of Data Flow Computing

and a Coinductive Approach to
Verifying Flowware Synthesis

Phan Cong Vinh and Jonathan P. Bowen

London South Bank University
Centre for Applied Formal Methods, Institute for Computing Research

Faculty of BCIM, Borough Road, London SE1 0AA, UK
phanvc@ieee.org, jonathan.bowen@lsbu.ac.uk

http://www.cafm.lsbu.ac.uk/

Abstract. Reconfigurable computing refers to the notions of configware
and flowware. Configware means structural programming, or program-
ming in space to execute computation in space. Flowware means data-
flow programming that schedules the data flow for output from or input
to the configware architecture. In this paper, data flows of a synthesized
computation are formalized. This means that data flow is specified as a
behavioral stream function in stream calculus, which is used to underpin
the semantics for Register Transfer Level (RTL) synthesis. A stream rep-
resentation allows the use of coinductive principles in stream calculus. In
particular, using the coinductive proof principle, we show that behavioral
stream functions in the three-stage synthesis process (scheduling, regis-
ter allocation and binding, allocation and binding of functional units) are
always bisimilar regardless of changes in a scheduling, allocation or bind-
ing procedure. Our formalization makes pipelining possible, in which all
functional units as well as registers of hardware resources are reused dur-
ing different control steps (C-steps). Moreover, a coinductive approach to
verifying flowware synthesis, which is independent of the heuristic during
register allocating and binding step, is proposed as a practical technique.

Keywords: Dynamic reconfiguration, Reconfigurable computing,
Dynamically Programmable Field Array (DPGA), Flowware, Config-
ware, Configware engineering, Embedded systems, Formal methods.

1 Introduction

Reconfigurable computing, also sometimes known as configurable computing, is
defined by DeHon and Wawrzynek as:

“computing via a post-fabrication and spatially programmed connection
of processing elements” [6].

DeHon and Wawrzynek’s definition lays stress on two of the principal factors of
reconfigurable computing:

M.L. Gavrilova and C.J.K. Tan (Eds.): Trans. on Comput. Sci. I, LNCS 4750, pp. 1–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 P.C. Vinh and J.P. Bowen

– Post-fabrication features of architecture adapting to the flexibility of appli-
cations due to changing data flows and operation conditions.

– The spatial paradigm of computation called Configware versus the temporal
paradigm of traditional microprocessors called Software.

The engineering and technology to implement the reconfigurable computing con-
cept have become realistic with the development of Field-Programmable Gate
Array (FPGA) technology. In fact, Lysaght has said that

“the importance of dynamically reconfigurable logic will increase, as FP-
GAs become larger” [24].

A specific type of FPGA that can be programmed on-the-fly during system
operation is dynamically reconfigurable FPGA, also called a Dynamically Pro-
grammable Field Array (DPGA). This originated in the TRANSIT project at
MIT in connection with their DPGA prototype [5]. The DPGA can be pro-
grammed in a partial or full reconfiguration. André DeHon states:

“Dynamically Programmable Gate Arrays (DPGAs) are programmable
arrays which allow the strategic reuse of limited resources. In so doing,
DPGAs promise greater capacity, and in some cases higher performance,
than conventional programmable device architectures where all array
resources are dedicated to a single function for an entire operational
epoch” [5].

These engineering aspects of reconfigurable computing refer to the notion of R.
Hartenstein’s configware engineering [9, 10, 11, 12, 13, 14, 17], including config-
ware and flowware, in which both configware and flowware codes are produced
by a compilation process from a high-level programming language source as in-
puts. Configware codes are for configuration before runtime, and flowware codes
execute data flows at runtime. Configware means structural programming, or
programming in space (see Figure 1). That is why configware executes computa-
tion in space. Configware is also sometimes called Soft IP (Intellectual Property)
Cores [15]. Flowware means data-flow programming that schedules the data flow
for output from or input to the DPGA-based architecture using one or several
data counters.

Figure 1 illustrates the difference between the configware approach and the
standard von Neumann-style processing. For von Neumann-based computing
over time, only one operation is executed per clock tick (also called clock cy-
cle) on a microprocessor and its intermediate results are saved in registers. For
computing in space, a sequence of operations is mapped from time to space and
executed per C-step (also called control step) in parallel on a DPGA; its inter-
mediate results are stored in buffers for another sequence of operations in the
next C-step.

Configware is only supported by the computing paradigm based on data flow
and not the computing paradigm based on von Neumann. Both flowware and
configware are two different complementary approaches that can be combined
in programming for computing systems based on data flow in a manner such
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Fig. 1. Computation in space vs. time (based on [15])

that the flowware determines which data item has to be connected with which
DPGA port of which configuration at which time. Obviously, the working style
is different from von Neumann computing systems based on programming the
instruction streams from software. Instead of instruction streams with one or
more program counters, data flows with data counters are programmed.

Figure 2(b) illustrates a Configware/Flowware Synthesis (CFS) process gen-
erating both configware and flowware from a high-level programming language
source: configware for configuration before runtime and flowware to execute data
flows at runtime. In software engineering, a software compiler generates only ob-
ject code from a high-level programming language source; see Figure 2(a).

We view the CFS process as a derivation of the implementation by the appli-
cation of transformations within a logical calculus. The end product is therefore
not only the implementation but also the mathematical proof that the imple-
mentation satisfies the specification.
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In conventional synthesis, hardware is represented by arbitrary data structures
and there are no restrictions as to the transformations on these data structures.
In CFS, hardware is represented by means of terms and formulae, and only
correctness-preserving logical transformations are allowed. Restricting synthesis
to only correctness-preserving logical transformations guarantees the correctness
of the synthesis procedure in an implicit manner. In contrast to conventional
synthesis, the result is not only a hardware implementation but also a proof of
its correctness with respect to the specification.

Unfortunately, DPGA systems supporting reconfigurable computing have still
not become widely commercialized because of high hardware costs associated
with the required large configuration memory. Only a few such systems have
been built for research. Hence to improve reconfiguration at lower hardware
cost, Xilinx has developed several commercial DPGA families with functionality
that is able to do fast partial reconfiguration from off-chip memory resources
[32].

Dynamic reconfiguration is likely to become increasingly important in DPGA
systems to allow greater flexibility. However, the added complexity can create
additional opportunities for errors in such systems. Particularly in mobile, safety-
critical or security-critical applications, it is important to use formal techniques
to avoid the introduction of errors [4, 18, 33, 34, 35, 36, 37, 38, 39]. In such cases,
it is hoped that a rigorous approach such as that presented in this paper will be
applied.

We show that computing based on data flow of flowware in configware engi-
neering [15] is considered as a behavioral function in stream calculus [27, 28, 29,
30], which supports the semantics for graphical networks at the Register Transfer
Level (RTL) [2]; coinduction [21, 22, 25, 26] is used to compute such behavioral
functions.

In particular, using the coinductive proof principle, we prove that behav-
ioral functions (representing output data flows of a synthesized computation) in
the three-stage synthesis process (including scheduling, register allocation and
binding, allocation and binding of functional units) are always bisimilar [20, 31]
regardless of internal changes in the three synthesis stages such as the changing
of a proper scheduling, allocation or binding procedure.

The remainder of the paper is organized as follows. Section 2 briefs some
related work and existing concepts of computing based on data flow and stream
calculus. Section 3 formalizes computing based on data flow in stream calculus.
A coinductive approach to verifying flowware synthesis is presented in section 4
and a short conclusion is given in section 5.

2 Preliminaries

In this section, some related work and existing concepts of computing based on
data flow and stream calculus are presented for preliminary consideration.
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2.1 Computing Based on Data Flow

In computing based on data flow, data flows are programmed from flowware
sources. Flowware determines which data item has to meet which DPGA port
at which time [9, 10, 11, 12, 13, 14, 17] (see Figure 3).

We need to distinguish two different domains of programming in time: instruc-
tion scheduling and data scheduling. The programming code for von Neumann-
like devices is an instruction schedule, compiled from software as in Figure 2(a).
The programming code for resources like DPGAs is a data schedule that can
be compiled from flowware code, determining which data item has to appear
at which port at which time. Such data schedules manage the data flows. This
is illustrated in Figure 3, showing a typical data flow notation introduced with
DPGAs.

The DPGA-based architecture is vital for the flowware-based paradigm. This
architecture allows the multiple data flows clocked into and out of such a pipe
network, in a similar manner to the heart and blood stream. Its DPGAs do not
have instruction sequencers. The mode of DPGA operation is transport-triggered
by data items. If synchronization is done by handshake instead of clocking, a
DPGA is sometimes called a wavefront array [15].
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The traditional DPGA can be used only for applications with strictly regular
data dependencies, because array synthesis methods use linear projections or
algebraic methods resembling linear projections. Such synthesis methods yield
only strictly uniform arrays with linear pipes. The Data Path Synthesis Sys-
tem (DPSS) [16], however, used simulated annealing instead (the mapper in
Figure 2(b)), which removed the traditional application limitations, enabling
the synthesis of DPGAs featuring any kind of non-uniform arrays with free form
pipes like zigzag, spiral, completely irregular, and many others. This drastically
improved flexibility is realized using runtime reconfigurable DPGAs.

The specification of data flows can be expressed by a flowware language.
Data flows are created by executing flowware code on distributed memory arrays
(denoted by the symbol D in Figure 2(b)) surrounding the DPGA to drive data
flows from/to the DPGA.

Flowware may also be described by higher level flowware languages, which are
similar to high-level software languages like C [1], for example SystemC [3, 8].
These languages include control structures such as jumping and (nested) looping.
The principal differences between software and flowware are that software makes
reference to only a single program counter, but flowware refers to several data
counters. As a result, flowware also includes parallel looping as an important
control structure, which is not supported by software.

2.2 Basic Stream Calculus

During our formalization, the Rutten’s stream calculus [27] and the following
useful operators are used as addition, convolution product, inverse, copy and
register, which are detailed in this subsection.

In stream calculus [27], a stream σ is defined by the following function:

σ : N −→ R

That is:
σ = (σ(0), σ(1), σ(2), . . . )

For most formal definitions of a stream, Rutten uses the following notation of
stream derivative for a stream definition. For any n � 0,

Differential equation Initial value
(σ(n))′ = σ(n+1) σ(0)

The initial value of σ is defined as its first element σ0, and the stream derivative,
denoted by σ′, is defined by (σ(n))′ = σ(n+1), for n � 0. In other words, the initial
value and derivative equal the head and tail of σ, respectively. The behavior of
a stream σ consists of two aspects: it allows for the observation of its initial
value σ(0); and it can make an evolution to the new stream σ′, consisting of the
original stream from which the first element has been removed. The initial value
of σ′, which is σ′(0) = σ(1), can in its turn be observed, but note that we had to
move from σ to σ′ first in order to do so. Now a behavioral differential equation
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defines a stream by specifying its initial value together with a description of its
derivative, which tells us how to continue.

Let R
ω = {σ | σ : N −→ R} be a set of streams of real numbers. Stream

calculus introduces a number of constants and the operations of addition, (con-
volution) product, and inverse of streams. These constants and operations make
of R

ω a calculus with many important properties. In particular, it will be possible
to compute solutions of linear systems of equations.

The real numbers can be considered as streams in the following manner. For
every r ∈ R, a stream [r] ∈ R

ω is defined by function:

[ ] : r ∈ R −→ [r] ∈ R
ω

That is:
[r] = (r, 0, 0, 0, . . . )

or

Differential equation Initial value
[r]′ = [0] [r](0) = r

Addition. Given σ = (σ(0), σ(1), σ(2), . . . ) ∈ R
ω and τ = (τ(0), τ(1), τ(2), . . . )

∈ R
ω. Addition of two streams σ and τ is defined by

σ + τ = (σ(0) + τ(0), σ(1) + τ(1), σ(2) + τ(2), . . . )

or

Differential equation Initial value
(σ + τ)′ = σ′ + τ ′ (σ + τ)(0) = σ(0) + τ(0)

Note that σ + τ denotes an addition of two streams, but σ(i) + τ(i) denotes an
addition of two real numbers.

This definition of addition allows us to add real numbers r to a stream σ,
yielding:

[r] + σ = (r, 0, 0, 0, . . . ) + (σ(0), σ(1), σ(2), . . . ) = (r + σ(0), σ(1), σ(2), . . . )

Usually, r + σ is used to denote [r] + σ. The context will always make clear
whether the notation r has to be interpreted as a real number r or as the stream
[r].

Property 2.1. For all r, s ∈ R and σ, τ, ρ ∈ R
ω,

[r] + [s] = [r + s] (2.1)
σ + 0 = σ (2.2)
σ + τ = τ + σ (2.3)

σ + (τ + ρ) = (σ + τ) + ρ (2.4)
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(Convolution) Product. The product of two streams σ and τ ∈ R
ω means a

convolution product defined by:

σ×τ = (σ(0).τ(0), (σ(0).τ(1))+(σ(1).τ(0)), (σ(0).τ(2))+(σ(1).τ(1))+(σ(2).τ(0)), . . . )

That is, for any n � 0,

(σ × τ)(n) =
n∑

i=0

σ(i).τ(n − i)

or

Differential equation Initial value
(σ × τ)′ = (σ′ × τ)+ (σ × τ)(0) = σ(0) × τ(0)
(σ(0) × τ ′)

Note that

– σ × τ or στ denotes a (convolution) product of two streams
– σ(i).τ(j) denotes a multiplication of two real numbers
– σ0 = 1 and σn+1 = σ × σn

– For k ∈ N, k × σ =
∑k

i=0 σ

This definition of sum allows us to multiply real numbers r with a stream σ,
yielding:

[r] × σ = (r, 0, 0, 0, . . . ) × (σ(0), σ(1), σ(2), . . . ) = (r.σ(0), r.σ(1), r.σ(2), . . . )

Normally, r × σ is used to denote [r] × σ and the following convention is used:

−σ = −1 × σ = [−1] × σ = (−σ(0), −σ(1), −σ(2), . . . )

Property 2.2. For all r, s ∈ R and σ, τ, ρ ∈ R
ω,

[r] × [s] = [r.s] (2.5)
0 × σ = 0 (2.6)
1 × σ = σ (2.7)
σ × τ = τ × σ (2.8)

σ × (τ + ρ) = (σ × τ) + (σ × ρ) (2.9)
σ × (τ ∗ ρ) = (σ × τ) ∗ (σ × ρ) (2.10)
σ × (τ × ρ) = (σ × τ) × ρ (2.11)

For convenience when denoting the stream formation σ = (r0, r1, . . . , rn, 0, 0, . . . )
where n � 0 and r0, . . . , rn ∈ R, the following important constant is used:

X = (0, 1, 0, 0, . . . )

or
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Differential equation Initial value
X ′ = [1] X(0) = 0

In fact, using X the following stream operations are elegantly and expressively
represented:

r × X = (0, r, 0, 0, . . . ) (2.12)
X × σ = (0, σ(0), σ(1), 0, 0, . . . ) (2.13)

Xn = (0, . . . n−2 times . . . , 0, 1, 0, 0, . . . ) (2.14)
n∑

i=0

riX
i = (r0, r1, . . . , rn, 0, 0, . . . ) (2.15)

This latter stream formation is called a polynomial stream. An expression of
streams only composed of the constant streams is called a closed form expression.

Inverse. Given a stream σ with σ(0) �= 0, a stream called the inverse of σ is
denoted by σ−1 (or 1

σ ) such that σ × σ−1 = 1. Formally, for every σ ∈ R
ω with

σ(0) �= 0, σ−1 is a unique stream satisfying the following differential equation.

Differential equation Initial value
(σ−1)′ = −σ(0)−1 × (σ′ × σ−1) (σ−1)(0) = σ(0)−1

For presentational reasons, the following notations are used

σ−n ≡ (σ−1)n σ

τ
≡ σ × τ−1

with the convention that (σ−1)′ can be written as

(
1
σ

)′ =
−σ′

σ(0) × σ

Property 2.3. For all σ, τ ∈ R
ω,

σ × σ−1 = 1 (2.16)
σ−1 × σ = 1 (2.17)
(σ−1)−1 = σ (2.18)

(σ × τ)−1 = σ−1 × τ−1 (2.19)

Copy. For all σ, τ, ρ ∈ R
ω, at any moment n � 0, the copy operation inputs

the value σ(n) and outputs two identical copies τ(n) and ρ(n). It is graphically
represented as in Figure 4(a).

σ(n) = τ(n) = ρ(n), for all n � 0

or

σ = τ = ρ

or
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Differential equation Initial value
σ′ = τ ′ = ρ′ σ(0) = τ(0) = ρ(0)

Register. Given σ = (σ(0), σ(1), σ(2), . . . ) ∈ R
ω and τ = (τ(0), τ(1), τ(2), . . . )

∈ R
ω, a register between streams σ and τ is defined by

τ = X × σ = (0, σ(0), σ(1), σ(2), . . . )

or
Differential equation Initial value
(τ)′ = σ τ(0) = 0

The register operation is graphically represented as in Figure 4(b). It can be
viewed as consisting of a one-place memory cell that initially contains the value
0. The operation starts its activity, at time 0, by outputting its value τ(0) = 0,
while it simultaneously inputs the value σ(0) stored in the memory cell. At any
time moment n � 1, the value τ(n) = σ(n − 1) is output and the value σ(n) is
input and stored. For this reason, the register operation is sometimes also called
a unit delay.

ρ

τ
σ

(a) Copy

τ = X × σR σ

(b) Register

Fig. 4. Copy and Register operators (adapted from [28])

Rutten has proved the following statement, called the fundamental theorem
of stream calculus in [27], which is used in all our calculations.
Theorem 2.4 (Fundamental Theorem of stream calculus). For all
streams σ ∈ R

ω,
σ = σ(0) + (X × σ′)

3 Formalization of Computing Based on Data Flow in
Stream Calculus

Representing data computing in stream calculus allows the formalization of the
powerful concept of pipelining, in which all hardware resources, including func-
tional units as well as registers, are reused during different C-steps (Control
steps) of computing. Our formalization is described below at the Register Trans-
fer Level (RTL) of reconfigurable computing in a pipelining style.

Computing based on data flow of flowware is considered as the function from
R

ω to R
ω in stream calculus, which supports the semantics for graphical networks

of RTL. Such networks can be viewed as implementations of computing based
on data flow.
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3.1 Some Definitions

For developing the formalization, we define two more stream operators named
multiplication (*) and assignment (:=) as follows:

Multiplication. Given σ = (σ(0), σ(1), σ(2), . . . ) ∈ R
ω and τ = (τ(0), τ(1),

τ(2), . . . ) ∈ R
ω, multiplication of two streams σ and τ is defined by

σ ∗ τ = (σ(0).τ(0), σ(1).τ(1), σ(2).τ(2), . . . )

or

Differential equation Initial value
(σ ∗ τ)′ = σ′ ∗ τ ′ (σ ∗ τ)(0) = σ(0).τ(0)

Note that σ ∗ τ denotes a multiplication of two streams, but σ(i).τ(i) is used for
a multiplication of two real numbers.

This definition of multiplication allows the multiplication of a real number r
with a stream σ, yielding:

[r] ∗ σ = (r, 0, 0, 0, . . . ) ∗ (σ(0), σ(1), σ(2), . . . ) = (r.σ(0), 0, 0, . . . )

Usually, r∗σ simply denotes [r]∗σ. The context will always make it clear whether
the notation r has to be interpreted as the real number r or as the stream [r].

Property 3.1. For all r, s ∈ R and σ, τ, ρ ∈ R
ω,

[r] ∗ [s] = [r.s] (3.1)
σ ∗ 0 = 0 (3.2)
σ ∗ 1 = 1 (3.3)
σ ∗ τ = τ ∗ σ (3.4)

σ ∗ (τ ∗ ρ) = (σ ∗ τ) ∗ ρ (3.5)
σ ∗ (τ + ρ) = (σ ∗ τ) + (σ ∗ ρ) (3.6)

Assignment. Given a stream σ = (σ(0), σ(1), σ(2), . . . ) ∈ R
ω and a stream

variable τ = (τ(0), τ(1), τ(2), . . . ) ∈ R
ω, assigning a stream σ to τ is defined by:

τ := σ

That is, for any i � 0, it puts the value of σ(i) into τ(i) (i.e., τ(i) := σ(i)) or

Differential equation Initial value
(τ := σ)′ = τ ′ := σ′ (τ := σ)(0) = τ(0) := σ(0)

Property 3.2. For all stream variables τ ∈ R
ω,

τ := 0 = 0 (3.7)
τ := 1 = 1 (3.8)
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3.2 Register Transfer Level (RTL) without Looping

We illustrate the various steps of flowware synthesis via an example that maps
an input triple (a, b, c) onto the output pair (x, y) as defined by the following
pseudo-procedural description:

Procedure comp1(
inputs: a,b,c: real;
outputs: x,y: real)

begin
x := ((a*b)*(c+(b+c))+((a*b)-(b+c)));
y := ((a*b)*(c+(b+c))*((a*b)-(b+c)));

end

The procedure uses the basic binary operations � ∈ {+, −, ∗, :=}

� : x ∈ R × y ∈ R −→ x � y ∈ R

The data flow diagram that corresponds to the procedural code is given in Fig-
ure 5, in which the intermediate results are named explicitly p, q, r, s and t.

�

�
�

�

�

�

�

	




� �

�

�

�
��

Fig. 5. Data flow diagram of comp1

The flowware synthesis process consists of the following steps: scheduling,
register allocation and binding, allocation and binding of functional units [7].

Scheduling. Scheduling is a process of specifying the number of C-steps k � 0
required for computing the application and delivering each operation of the appli-
cation to one particular C-step, numbered 0, 1, . . . , k. As in Figure 6, scheduling
determines four C-steps (0, 1, 2, 3) and assigns operations to the four C-steps as
follows: one addition to C-step 0, one addition and one multiplication to C-step
1, one subtraction and one multiplication to C-step 2, and one addition and one
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multiplication to C-step 3. Indeed, the schedule above is not unique and there
may be another scheduling arrangement. As a result, two following major factors
must be considered and traded off appropriately:

– How many C-steps are suitable?
– How many hardware requirements are needed for implementing the opera-

tions?

The above factors are important because the number of C-steps determines the
speed of the implementation, whereas the hardware resources determine the size
of the implementation. In addition, a scheduling process should consider the
following two challenges:

– Constraints of hardware resources for the operations;
– Constraints of time for the execution.

In addressing each of these, suitable scheduling algorithms are required.

�

�
�

�

�

�

�
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�
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�
��
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������ �
�������
�������
������

Fig. 6. Partitioning data flow of comp1

Register allocation and binding. This step of flowware synthesis performs
two tasks:

– Allocation: specifying the number of registers needed for saving intermediate
results between two C-steps.

– Binding: mapping the intermediate results to the registers for every C-step.

It is required that the number of registers must be equal to the maximum
number of intermediate results between two C-steps. As in Figure 7, we need
four registers numbered 1, 2, 3, 4 for allocating and binding between C-steps 0
and 1; the registers 1, 2 and 3 are reused between C-steps 1 and 2; between
C-steps 2 and 3, the registers 1 and 2 are reused again.
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Fig. 7. Register allocation and binding of comp1

Register allocation and binding have an impact on utilization of hardware
resources. In other words, the better that registers can be allocated and bound,
the better that extra hardware resources are avoided.

Now, using stream calculus mentioned in subsection 2.2, we formalize data
flow computing at the Register Transfer Level (RTL) of reconfigurable computing
in a pipelining style. Formally, computing based on data flow is considered as
the function from R

ω to R
ω in stream calculus.

For the data flows b, c ∈ R
ω, the function s : R

ω −→ R
ω determines a com-

putation based on b and c (see C-step 0 in Figure 7) to yield:

s = b + c (3.9)

For the data flows a, b, s ∈ R
ω, two functions p, q : R

ω −→ R
ω determine the

computations based on a, b and s (see C-step 1 in Figure 7) to yield:

p = X × a ∗ X × b

= X × (a ∗ b) (3.10)
q = X × s + X × c

= X × (s + c) (3.11)

In a similar way, based on the data flows p, q ∈ R
ω, two functions r, t : R

ω −→ R
ω

are determined by (see C-step 2 in Figure 7):

r = X × p ∗ X × q

= X × (p ∗ q) (3.12)
t = X × p − X2 × s (3.13)
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Therefore, two output functions x, y : R
ω −→ R

ω (see C-step 3 in Figure 7)
yield:

x = X × t + X × r

= X × (t + r)
by (3.12) and (3.13)

= X × ((X × p − X2 × s) + (X × p ∗ X × q))
by (3.10) and (3.11)

= X × ((X2 × (a ∗ b) − X2 × (b + c))+

(X2 × (a ∗ b) ∗ X2 × (s + c)))
by (3.9)

= X × ((X2 × (a ∗ b) − X2 × (b + c))+

(X2 × (a ∗ b) ∗ X2 × (b + c + c)))

= X3 × (((a ∗ b) − (b + c)) + ((a ∗ b) ∗ (b + c + c)))

= X3 × (((a ∗ b) − (b + c)) + ((a ∗ b) ∗ (b + 2c))) (3.14)

and

y = X × t ∗ X × r

= X × (t ∗ r)
by (3.12) and (3.13)

= X × ((X × p − X2 × s) ∗ (X × p ∗ X × q))
by (3.10) and (3.11)

= X × ((X2 × (a ∗ b) − X2 × (b + c))∗
(X2 × (a ∗ b) ∗ X2 × (s + c)))

by (3.9)

= X × ((X2 × (a ∗ b) − X2 × (b + c))∗
(X2 × (a ∗ b) ∗ X2 × (b + c + c)))

= X3 × (((a ∗ b) − (b + c)) ∗ ((a ∗ b) ∗ (b + c + c)))

= X3 × (((a ∗ b) − (b + c)) ∗ ((a ∗ b) ∗ (b + 2c))) (3.15)

Let σ = a ∗ b − (b + c) + a ∗ b ∗ (b + 2c) and τ = a ∗ b − (b + c) ∗ (a ∗ b ∗ (b + 2c)),
hence (3.14) and (3.15) yield output streams x = X3 × σ and y = X3 × τ . The
following behavioral differential equations describes the two output streams x
and y:

Differential equation Initial value
x(3) = σ x(0) = x(1) = x(2) = 0
y(3) = τ y(0) = y(1) = y(2) = 0

The visual stream representation in Figure 8 is also considered as a stream graph
of RTL in Figure 7.
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Fig. 8. Stream representation for RTL of comp1

Generally, if our computing is scheduled in n C-steps, for n � 0, then x =
Xn × σ and y = Xn × τ and

Differential equation Initial value
x(n) = σ x(i)(0) = 0, 0 � i � n − 1
y(n) = τ y(i)(0) = 0, 0 � i � n − 1

A bisimulation on R
ω is a relation B ⊆ R

ω × R
ω such that, for all α and β in

R
ω, if α B β then α(0) = β(0) and α′ B β′.
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Proposition 3.3 (Bisimulation). For n � 0, all output data flows x = X(n)×
σ (or y = X(n) × τ) are bisimulation in pairs.

Proof. To show this, we justify that there exists a bisimulation relation B ⊆
R

ω × R
ω with 〈X(i) × σ, X(j) × σ〉 ∈ B, 0 � i, j � n. Such a relation B

can be constructed in stages, by computing the respective derivatives of both
u = X(i) × σ and v = X(j) × σ step by step. The pairs to be included in B are
the following

{〈ui+k, vj+k〉 | 0 � i, j � n, k � 0}

Corollary 3.4 (Coinduction). For all output data flows X(n) × σ in R
ω and

0 � i, j � n, X(i) × σ = X(j) × σ.

Proof. Consider two output data flows u = X(i) × σ and v = X(j) × σ. From
proposition 3.3, B ⊆ R

ω×R
ω is a bisimulation on R

ω containing the pair 〈ui, vj〉.
It follows by induction on k that 〈ui+k, vj+k〉 ∈ B, for k � 0, because B is a
bisimulation. This implies that u(i+k)(0) = v(j+k)(0), this proving that u = v.

Function unit allocation and binding. A Functional Unit (FU) executes
the following two tasks:

– Allocation: determining the operators for implementing the operations of
each C-step;

– Binding: implementing the operations of the data flow graph.

The FUs are often built in a library describing the mapping between its functions
and the relevant operations. The FUs can be implementations of single-purpose
operations or multiple-purpose operations with control input signals for selecting
the desired operation. As in Figure 9, three single-purpose FUs are required to
implement three operations +, − and ∗ in four C-steps. Specifically, in C-step 0
one FU is just for the implementation of the addition (+). In C-step 1, we need
two FUs where one FU is for implementing the multiplication (∗) and one other
FU is reused for the addition (+). In C-step 2, we also need two FUs where one
FU is reused for implementing the multiplication (∗) and one other FU for the
subtraction (−). Finally, two FUs are reused for implementing the addition (+)
and multiplication (∗) in C-step 3.

An alternative is that we just need two FUs in total including one single-
purpose FU for implementing the multiplication (∗) and one multiple-purpose
FU for the addition (+) and subtraction (−). In this way, the single-purpose FU
is reused in the last three C-steps and multiple-purpose FU with control input
signals (0/1) for selecting the desired operation (−/+) is present in all four C-
steps, as in Figure 10. If the control signal is switched to 0, then the subtraction
(−) is executed otherwise the addition (+).

As a consequence, the better that FUs can be allocated and bound, the better
that extra hardware resources are avoided. In other words, FU allocation and
binding have an influence on how to use hardware resources in the effective
way.
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Fig. 9. FU allocation and binding of comp1: three single-purpose FUs

3.3 Register Transfer Level (RTL) Including Looping

Consider the synthesis of flowware via another example that calculates the ele-
ments of an array a:

a[0] := 1
a[1] := a[0]
a[2] := a[1] + a[0]

for i � 3, yielding

a[i] := a[i − 1] + a[i − 2] + a[i − 3]

and maps the elements to output y as defined by the pseudo-procedural descrip-
tion as follows:

Procedure comp2(
variables: a[]: real; i: num;
outputs: y: real)

begin
/* assigning the value 1 to the element a[0]
of array a[] */

a[0] := 1;
/* outputting the value of a[0] */

y := a[0];
/* assigning the value of a[0] to the element a[1]
of array a[] */

a[1] := a[0];
/* outputting the value of a[1] */

y := a[1];
/* assigning the value of expression a[1]+a[0]
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Fig. 10. FU allocation and binding of comp1: one single-purpose FU and one other
multiple-purpose FU

to the element a[2] of array a[] */
a[2] := a[1]+a[0];

/* outputting the value of a[2] */
y := a[2];

/* setting up the first value of looping index */
i := 3;

loop
/* assigning the value of expression a[i-1]+a[i-2]+a[i-3]
to the element a[i] of array a[] */

a[i] := a[i-1]+a[i-2]+a[i-3];
/* outputting the value of a[i] */

y := a[i];
/* increasing the looping index */

i++;
until unavailable

end

Note that each text in /*. . . */ of the above-mentioned procedure is used to
explain the meaning of the next operation. As a result, the procedure comp2
produces the following values to the elements of array a[]:

a[0] = 1
a[1] = 1
a[2] = 1 + 1(= 2)
a[3] = 2 + 1 + 1(= 4)
a[4] = 4 + 2 + 1(= 7)
. . . = . . .
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Fig. 11. Data flow diagram of comp2

The data flow diagram related to the procedural code comp2 is given in Figure 11,
which includes two types of the operations: addition (+) and unit delay, which is
considered as consisting of a one-place memory cell containing the initial value
0. At the first moment, the unit delay starts its performance by outputting its
initial value 0, while it simultaneously inputs the next value for saving in the
one-place memory cell. At any future moment n � 1, the (n − 1)th value in
memory cell is output and the nth new value is input and stored.

As mentioned in section 3.2, the RTL synthesis process of flowware goes
through the following steps: scheduling, register allocation and binding, FU al-
location and binding.

Scheduling. In general, the scheduling is not unique because it is decided ac-
cording to the speed of implementation (i.e., the number of C-steps) and the
size of implementation (i.e., the hardware resources) required. In the application
comp2, we consider following two potential schedules of operations: single C-step
as in Figure 12 and double C-step scheduling as in Figure 13.
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Fig. 12. Single C-step scheduling of comp2
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Fig. 13. Double C-step scheduling of comp2

Register allocation and binding. If the single C-step scheduling is used,
it does need one extra register labeled 4 for allocation and binding at the end
of each C-step; moreover three unit delays are semantically replaced by three
registers named 1, 2, 3 as in Figure 14. As a result, the following behavioral
differential equation defines the behavior of comp2:

Differential equation Initial values
a(3) = a(2) + a(1) + a a(0) = 1

a(1)(0) = a(0)
a(2)(0) = a(1)(0) + a(0)

To solve this equation we use the fundamental theorem 2.4 on page 11 to obtain
the following equations:

a = 1 + X × a(1) (3.16)
a(1) = 1 + X × a(2) (3.17)
a(2) = 2 + X × a(3) (3.18)

By (3.18), then (3.17) and (3.16) are driven into

a(1) = 1 + 2X + X2 × a(3) (3.19)
a = 1 + X + 2X2 + X3 × a(3) (3.20)

By (3.18), (3.19) and (3.20), the following is yielded:

a(3) = a(2) + a(1) + a

= (2 + X × a(3)) + (1 + 2X + X2 × a(3)) +
(1 + X + 2X2 + X3 × a(3)) (3.21)
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Fig. 14. Register allocation and binding for the single C-step RTL of comp2

Therefore, by transforming streams on (3.21)

a(3) =
4 + 3X + 2X2

1 − X − X2 − X3 (3.22)

and, substituting (3.22) into (3.20)

a = 1 + X + 2X2 + X3(
4 + 3X + 2X2

1 − X − X2 − X3 )

This yields the result in closed form

a =
1

1 − X − X2 − X3

The visual stream representation in Figure 15 is also considered as an imple-
mentation of comp2 and the following behavioral function defines the behavior
of the output y:

Differential equation Initial values
y = a + X × a + X2 × a a(0) = 1

a(1)(0) = a(0)
a(2)(0) = a(1)(0) + a(0)

Substituting

a =
1

1 − X − X2 − X3

into this differential equation yields the behavior of the output y in closed form:

y =
1 + X + X2

1 − X − X2 − X3
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Fig. 15. Stream representation for the single C-step RTL of comp2
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Fig. 16. Register allocation and binding for the double C-step RTL of comp2

If the double C-step scheduling is used, three unit delays are semantically
replaced by three registers named 1, 2, 3; moreover, two extra registers named
4 and 5 are allocated and bound at the end of each C-step labeled by an even
number. Register 4 is reused at the end of each C-step labeled by an odd number
as in Figure 16. As a result, the following behavioral differential equation defines
the behavior of comp2:

Differential equation Initial values
a(3) = X × (a(2) + a(1) + a) a(0) = 1

a(1)(0) = a(0)
a(2)(0) = a(1)(0) + a(0)

To solve this equation we apply the fundamental theorem 2.4 (see page 11) as
in the single C-step case above. By (3.18), (3.19) and (3.20), the following is
yielded:
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a(3) = X × (a(2) + a(1) + a)
= X × ((2 + X × a(3)) + (1 + 2X + X2 × a(3)) +

(1 + X + 2X2 + X3 × a(3))) (3.23)

Therefore, by transforming streams on (3.23)

a(3) =
4X + 3X2 + 2X3

1 − X2 − X3 − X4 (3.24)

and, substituting (3.24) into (3.20)

a = 1 + X + 2X2 + X3(
4X + 3X2 + 2X3

1 − X2 − X3 − X4 )

the result in closed form is:

a =
1 + X + X2 − 2X3

1 − X2 − X3 − X4

The visual stream representation in Figure 17 is also considered as an imple-
mentation of comp2 and the following behavioral function defines the behavior
of the output y.

Differential equation Initial values
y = X × a + X2 × a + X3 × a a(0) = 1

a(1)(0) = a(0)
a(2)(0) = a(1)(0) + a(0)

Replacing

a =
1 + X + X2 − 2X3

1 − X2 − X3 − X4

into this differential equation yields the behavior of the output y in closed form:

y =
X(1 + X + X2)(1 + X + X2 − 2X3)

1 − X2 − X3 − X4

Proposition 3.5 (Bisimulation). Two output data flows a + X × a + X2 × a
and X × a + X2 × a + X3 × a are bisimilar each other.

Proof. This follows from proposition 3.3 on page 18. In fact, there exists a bisim-
ulation relation B ⊆ R

ω×R
ω with 〈a+X×a+X2×a, X×a+X2×a+X3×a〉 ∈ B.

Such a relation B can be constructed in stages, by computing the respective
derivatives of both u = a + X × a + X2 × a and v = X × a + X2 × a + X3 × a
step by step. The pairs to be included in B are the following

{〈ui, vi+1〉 | 0 � i � n}



26 P.C. Vinh and J.P. Bowen

� ����������� ����������

�����������

���

������
���� �

�

�� ���
��

���

�

�

�
�

�� �

�

�

�

�

Fig. 17. Stream representation for the double C-step RTL of comp2

Corollary 3.6 (Coinduction). If (a + X × a + X2 × a) ∼ (X × a + X2 × a +
X3 × a) then (a + X × a + X2 × a) = (X × a + X2 × a + X3 × a)

Proof. This is a result of corollary 3.4 on page 18. In fact, consider two output
data flows u = a + X × a + X2 × a and v = X × a + X2 × a + X3 × a.
From proposition 3.5, B ⊆ R

ω × R
ω is a bisimulation on R

ω containing the pair
〈ui, vi+1〉. It follows by induction on k that 〈uk, vk+1〉 ∈ B, for k � 0, because B
is a bisimulation. This implies that u(k)(0) = v(k+1)(0), this proving that u = v.

FU allocation and binding. If single C-step scheduling is used, then two sep-
arate FUs are implementations of two additions (+) and one FU is implemented
for the assignment (:=), with control input signals (0/1) to select suitable ex-
ecutions, as in Figure 18. If the control signal is switched to 0, then the input
value of a goes through to the output, otherwise a is assigned by a second input
value before being output.

If the double C-step scheduling is used, then we just need two FUs in total.
In each C-step labeled by the even numbers, one FU is for the implementation

�

�
�

���

������	�

������	�

�

������	�

��

����

��

���

	


 �

��

���

�

Fig. 18. FU allocation and binding for the single C-step RTL of comp2
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Fig. 19. FU allocation and binding for the double C-step RTL of comp2

of the addition (+) and one other is for implementing the assignment (:=). In
each C-step labeled by the odd numbers, the FU for the addition is reused as in
Figure 19.

4 A Coinductive Approach to Verifying Flowware
Synthesis

4.1 Verifying Flowware Synthesis

Verified flowware synthesis is a verification technique that is aimed towards
and integrated into synthesis steps. Beside the current post-synthesis verifi-
cation techniques [23], we can also perform a verifying flowware synthesis to
guarantee correct synthesis, as illustrated in Figure 20 for our coinductive
approach.

The difference with post-synthesis verification is that the knowledge about
which synthesis step has been performed is used to its advantage during ver-
ification. However, the knowledge about how the synthesis was performed is
unknown. Thus our coinductive approach to verifying flowware synthesis is in-
dependent of the heuristic that is applied during scheduling, register allocat-
ing and binding or FU (Functional Unit) allocation and binding of a synthesis
process.

In other words, our central goal of verifying flowware synthesis is to check
that the synthesis does not violate global system properties or leads to incon-
sistent system configurations. Thus such an approach to verifying flowware syn-
thesis avoids some disadvantages of postsynthesis verification such as being very
time-consuming or even undecidable [37, 23, 40], and becomes a good choice to
substitute for the current post-synthesis verification approaches.
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Stream function g

Yes 

No 

FU Allocation and Binding
(using allocation and binding algorithms) 

<f,g> is 
bisimulation? 

Register Allocation and Binding
(using allocation and binding algorithms) 

Scheduling
(using scheduling algorithms) 

High-level program 
source 

(with output stream function f) 

RTL synthesis result 

Fig. 20. Our coinductive approach to verifying flowware synthesis

4.2 Using Bisimulation Relation for Verifying Flowware Synthesis

Using a stream function and bisimulation relation, our verification technique is
integrated into the register allocation and binding step of the three-step synthesis
process. By this approach, we consider two following themes:

– Bisimulation (denoted by ∼) between the output stream function f spec-
ifying output from a high-level program source and the behavioral stream
function g specifying output after allocation and binding the registers.

– Integrating bisimulation into the register allocation and binding step of the
three-step synthesis process.
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Bisimulation between f and g (f ∼ g)

Let f and g be of polynomial streams represented by
n∑

i=0

riX
i

(see stream function 2.15 on page 10)

Proposition 4.1 (Bisimulation). If

f =
n∑

i=0

fiX
i (4.1)

and

g = Xk × f =
n∑

i=0

fiX
i+k (4.2)

then
f ∼ g

Proof. This is a generalization of the propositions 3.3 on page 18 and 3.5 on
page 25. A relation 〈f, g〉 ∈ B ⊆ R

ω × R
ω can be constructed in stages, by

computing the respective derivatives of both f and g step by step. The pairs to
be included in B are the following

{〈fi, gi+k〉 | 0 � i � n}

For instance, consider the bisimulation relations in proposition 3.3 on page 18
and in proposition 3.5 on page 25; we have the following bisimulations:

f ∼ g

σ X(n) × σ, for n � 0
τ X(n) × τ , for n � 0

a + X × a + X2 × a X × a + X2 × a + X3 × a

Corollary 4.2 (Coinduction). If

f =
n∑

i=0

fiX
i (4.3)

and

g = Xk × f =
n∑

i=0

fiX
i+k (4.4)

are bisimilar then
f = g
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Proof. Given two output data flows f in (4.3) and g in (4.4), from proposition 4.1,
B ⊆ R

ω × R
ω is a bisimulation on R

ω containing the pair 〈fi, gi+k〉. It follows
by induction on m that 〈fm, gm+k〉 ∈ B, for m � 0, because B is a bisimulation.
This implies that f (m)(0) = g(m+k)(0), and as a result this proving that f = g.

As an illustration, consider corollary 3.4 on page 18 and corollary 3.6 on page 26;
they yield:

f = g

σ Behavioral X(n) × σ, for n � 0
τ equivalence X(n) × τ , for n � 0

a + X × a + X2 × a X × a + X2 × a + X3 × a

Specifying integration of (f ∼ g) into a verified flowware synthesis

To see integration of a bisimulation relation into the flowware synthesis process as
in Figure 20, we need to specify this algorithmic synthesis process in an algebraic
manner. In other words, the flowware synthesis process needs to be represented
as an algebraic expression and, in this way, it can be equivalently transformed
by some algebraic laws [19] where each of three synthesis steps is considered as a
programmatic operand of the algebraic expression, and the bisimulation between
f and g as a control operand (i.e., Boolean operand). In fact, the notions of
operand and operator are necessary to build up a so-called algebraic expression
and this means that using suitable operators, the bisimulation relation f ∼ g (as
a control operand) and three flowware synthesis steps (as three programmatic
operands) can be integrated together for a verified flowware synthesis. Thus,
an algebraic expression is seen as a formal semantics of the verified flowware
synthesis.

As a reasonable convention, a programmatic operand refers to a program or
command and control operand to a Boolean expression. Let S, R, F and f ∼ g
be operands referring to programs of scheduling, register allocation and binding,
FU allocation and binding, together with a bisimulation relation, respectively. A
formal semantics of the verified flowware synthesis can be descriptively specified
by the following semantic mapping:

Verified flowware synthesis(scheduling, register, FU, bisimulation)

Algebraic Expression(S, R, F, f ∼ g)

semantic mapping

�

Besides the operands such as S, R, F or f ∼ g, we need to define some suitable
operators to able to set up an algebraic expression of flowware synthesis.

• SKIP command: This is a programmatic operand. Execution of this com-
mand terminates successfully, leaving everything unchanged. SKIP is denoted
by 1.
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• Operator of sequential composition (denoted by ;): (S; R) is a program that
is executed by first executing S. If S does not terminate; neither does (S; R). If
and when S terminates, R is started; and then (S; R) terminates when R does.

The sequential composition has some following algebraic laws:

– Unit 1:
S;1 = 1; S = S (4.5)

This means that preceding or following a program S by the command 1 does
not change the effect of the program S.

– Associativity:
S; R; F = (S; R); F = S; (R; F ) (4.6)

This means that sequential composition is associative; to perform three pro-
grams in order, we can either perform the first program followed by the other
two or the first two programs followed by the third.

• Operator of nondeterministic choice (denoted by ∪:) (S ∪ R) is a program
that is executed by executing either S or R. The choice between them is arbi-
trary. Thus, we can delegate the decision to the synthesis process executing the
program.

In the presence of nondeterminism, the following laws apply:

– Symmetry
S ∪ R = R ∪ S (4.7)

Obviously, there is not any difference in what order a choice is offered.
– Associativity

S ∪ (R ∪ F ) = (S ∪ R) ∪ F (4.8)

A choice between three alternatives can be offered as first a choice between
one alternative and the other two, followed by a choice between the other
two, and it does not matter in which way the choices are grouped.

– Idempotence
S ∪ S = S (4.9)

A choice between one thing and itself offers no choice at all.

A choice between n different scheduling programs can be expressed by the
indexed notation:

∪
i�n−1

Si = S0 ∪ S1 ∪ . . . ∪ Sn−1

and thus, when a scheduling program S is considered, then this means that

S = ∪
i�n−1

Si

In a similar way, a choice between n allocation and binding programs relating
to registers or FUs is represented by

R = ∪
i�n−1

Ri = R0 ∪ R1 ∪ . . . ∪ Rn−1
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and
F = ∪

i�n−1
Fi = F0 ∪ F1 ∪ . . . ∪ Fn−1

• Conditional operator (denoted by � �:) (F � (f ∼ g) � S) is a program.
It is executed by first evaluating (f ∼ g). If (f ∼ g) is true, then F is executed
otherwise S is executed instead. A commonly used notation for a conditional is
if (f ∼ g) then F else S.

Let a negation of (f ∼ g) be (f � g) (or ¬(f ∼ g)). We have the following
laws:

F � (f ∼ g) � S = S � (f � g) � F (4.10)
(F � (f ∼ g) � S); R = (F ; R) � (f ∼ g) � (S; R) (4.11)

Law (4.10) offers a fairly familiar equivalence when replacing evaluation of (f ∼
g) by evaluation of its negation. Law (4.11) distributes leftwards through (f ∼ g),
namely, evaluating (f ∼ g) is not affected by what happens afterwards.

• Looping operator (denoted by •:) ((f � g)•S) is a program. It is executed by
first evaluating (f � g). If (f � g) is false, execution terminates successfully and
nothing is changed, otherwise the process proceeds to execute S; ((f � g) • S).
A conventional notation for looping is while (f � g) do S. Thus, ((f � g) • S)
can be also expressed by

(f � g) • S = (S; (f � g) • S) � (f � g) � 1 (4.12)

Based on the above-mentioned operators, the verified flowware synthesis, in
which the bisimulation f ∼ g is integrated (see Figure 20), is specified by the
following expression:

(S; R); (F � (f ∼ g) � (((S; R); (f � g) • (S; R)); F )) (4.13)

It means that this is a program of the verified flowware synthesis. It is executed
by first scheduling, allocating and binding registers, then evaluating (f ∼ g) (or
(f � g)). If (f ∼ g) is true (or (f � g) is false), allocating and binding FUs
are executed, otherwise the process proceeds to execute repeatedly scheduling,
allocating and binding registers, then evaluating (f ∼ g) (or (f � g)). The
verified flowware synthesis terminates when and if allocating and binding FUs
terminate successfully.

By (4.5) under sequential composition, (4.13) is algebraically transformed to
be the following expression

(S; R); ((1; F ) � (f ∼ g) � (((S; R); (f � g) • (S; R)); F )) (4.14)

(4.14) becomes the following expression by (4.11) under conditional operator

(S; R); (1 � (f ∼ g) � ((S; R); (f � g) • (S; R))); F (4.15)

By (4.10) under conditional operator, then (4.15) becomes the following
expression

(S; R); (((S; R); (f � g) • (S; R)) � (f � g) � 1); F (4.16)



Formalization of Data Flow Computing 33

By (4.12) under looping operator, expression (4.16) is driven into

(S; R); ((f � g) • (S; R)); F (4.17)

It can be seen that all expressions (4.13) – (4.17) have the same meaning but
version (4.17) of the specification is apparently more expressive.

5 Conclusion

In this paper, using stream calculus, we have formalized the flowware of recon-
figurable computing synthesis. In particular, RTL synthesis with and without
looping is formalized as behavioral functions in stream calculus. This approach
supports the semantics of RTL synthesis and is useful in applying coinduction to
compare the behavioral functions. Our formalization allows pipelining, in which
all hardware resources consisting of functional units as well as registers are reused
during different control steps.

We have demonstrated that our coinductive approach to verifying flowware
synthesis, which is independent of the heuristic during the register allocating and
binding step, can be applicable in practice when using stream calculus and coin-
ductive proof principles to formalize computing based on data flow of flowware.
In our approach, it turns out that, in using a behavioral stream function and a
bisimulation relation, the formal verification seems to be a promising alternative
to the current commonly used post-synthesis verification approach. In addition,
our intention is to develop a coinductively verifying configware/flowware syn-
thesis approach that covers the full synthesis from the algorithmic level down to
the logical level to help guarantee correct synthesis.
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Abstract. Traditional negotiation approaches pay intensive attention
to decision making models in order to reach the optimal agreements,
while placing insufficient efforts on the problem of partner selection. In
open and dynamic environments, when the number of potential partners
is huge, it may be expensive or even impractical to perform complicated
negotiations with all of its potential partners. In this paper, based on the
proposed extended dual model, we propose both linear and non-linear
approaches for partner selection in multi-agent systems. By employing
these two approaches with the extended dual concern model, agents can
adapt their individual behaviors for partners selection in negotiation.
The proposed approaches have three merits, which are: (1) both agents’
own benefits and their potential partners’ benefits are considered dur-
ing the partners selection process; (2) agents’ preferences are employed
by the proposed approaches which ensure the selection results to ac-
cord with agents’ expectations; (3) the proposed approaches are sensi-
tive to changes of the negotiation environment, so they can be adopted
in open and dynamic negotiation environments. According to the case
study in four scenarios, the selection results are reasonable and accord
with agents’ expectations.

1 Introduction

Traditional negotiation approaches in multi-agent systems (MASs), such as the
game theory [1] [2] [3] [4] [5] and the argumentation-based negotiation [6] [7] [8]
[9], emphasize the decision making models to determine the optimal coalition
structure and the division of payoff, with a little devotion to the negotiation
partners selection. In recent years, some researchers have recognized the impor-
tance of partners selection in negotiation and proposed several approaches for
selecting suitable partners during the negotiation. In [3], a significant model is
introduced by Faratin et al., which defines a range of strategies and can be em-
ployed by computational agents to generate initial offers, evaluate proposals and
offer counter proposals. With such a model, in each cycle of the negotiation, a
comprehensive analysis is applied to help agents find the optimal offers and most
suitable partners. Kraus [10] further classifies negotiations into three categories,
which are data allocation, resource allocation and task distribution, according to
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their application domains. In each of these categories, complicated and heuristic
methods are introduced to help agents find the optimal negotiation agreements
under different situations. However, as the rapid development of autonomous
agents and the Internet techniques, most work environments of MASs become
uncertain and dynamic [11] [12]. In such open and dynamic environments, when
the number of potential partners is huge, to perform complicated negotiations
with all of the potential partners may be expensive in terms of computational
time and resources, or even impractical. Thus, an appropriate approach which
can be employed by agents to choose partners with a high chance of reaching a
good agreement in subsequent negotiation from a large scale of potential part-
ners is required greatly. Such a selection mechanism is very important because
of practicality and efficiency of MASs interactions.

Nevertheless, it is noticed that agents may perform various behaviors in ne-
gotiation by considering their motivations and aims, which makes the partners
selection much more complicated and difficult to steer than expected. Therefore,
it is necessary to discuss the kinds of agents’ behaviors in negotiation before the
partners selection mechanism is given. In general, agents may compete or cooper-
ate with each others in order to gain their own goals or a common goal in MASs.
The final agreements about how to compete or cooperate are achieved through
negotiating. Therefore, negotiations can be classified into competitive negotia-
tion and cooperative negotiation according to the behaviors of its participants.
In a competitive negotiation, participators perform the roles as challengers, while
in a cooperative negotiation, participators are cooperators. Thus, criterions on
partner selection are also different in these two kinds of negotiations. For exam-
ple, in a cooperative negotiation, since agents see others’ gain as its own, it will
select the agents which can increase global benefits as its parters. In a compet-
itive negotiation, agents prefer choose a partner which can supply the highest
benefit to itself than others. These two kinds of partners selection strategies are
the most simple and direct approaches in extreme situations. However, in actu-
ally, researches [13] [14] found that it is not always beneficial for agents only to
cooperate with others about global tasks in cooperative negotiation. Also in a
competitive negotiation, agents might choose to commit to global tasks for other
agents. What is more, in some circumstance, when agents’ behaviors beyond
these two extreme situations, agents cannot adopt these two extreme partners
selection approaches simply, because agents need both appropriate competition
and cooperation to maximum both the local and global utilities.

In order to address these issues mentioned above, an extended dual concern
model for partners selection in negotiation is proposed in this paper. Further-
more, based on this model, both linear and non-linear partners selection ap-
proaches are proposed. The linear approach employs agents preference and bal-
ances the selection between these two extreme situations mentioned above, while
the non-linear approach employs fuzzy logic mechanism to model and control
partners selection process. The advantage of the linear approach is easy to be
implemented and quicker results generating in a short time, while the advantage
of the non-linear approach is generating more reasonable selection results and
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more logical. In general, these two approaches have three common merits, which
are: (1) both the agents’ own benefit and their partners’ benefits are considered;
(2) by employing the extended dual concern model, agents’ attitudes to their
partners are captured in partners selection process; (3) both of them are sensi-
tive to the change of the negotiation environment and can be employed an open
and dynamic negotiation environment.

The remainder of this paper is organized as follows. In Section 2, the related
works are presented and discussed. In Section 3, an extended dual concern model
is proposed, the partners selection problem is formally described, and potential
partners in general negotiation in MASs are further classified and analyzed. In
Section 4, we propose a linear approach for the partners selection. In Section 5, a
non-linear approach is proposed. In Section 6, several examples are demonstrated
and evaluated. Finally, in Section 7, this paper is concluded and further work is
outlined.

2 Related Work

Previous research [15] [16] [17] [18] [19] in the MASs literature has proposed
models for partners selection, which take others’ preferences into account when
deliberating about agents’ decisions. In this section, we just list and discuss few
of them in order to highlight our motivation.

Brzostowski and Kowalczyk [20] [21] proposed a possibilistic case-based model
in which the possibility of successful negotiation for each potential partners is
predicted on the basis of its behaviors in previous offers. The qualitative expected
utility for each potential partner is derived and the agents are ordered according
to the values of these utilities. The order determines who is more and who is less
desirable partner for negotiation. However, this possibilistic case-based model is
based on the assumption that the more similar are situations the more possible
that the outcomes are similar, which may restrict applications in open dynamical
environments. That is because in an open dynamical environment, the complete
factors set which may impact the selection results that cannot be captured nor
monitored fully by the system. Thus, if the factors monitored by system are not
significant for partners selection in a negotiation, even though some cases are
very similar, it is still not confident enough to make a final decision. What is
more, in an open dynamical environment, the importance of each selection factor
may be changed too along with the changing of environment. Therefore, within
different period, the most suitable partners may be different for the same factor
set. This phenomena very likes the situation that the same person may have
different perceptions on the same picture at different environments and spirits.

Munroe et al. [22] proposed a motivation-based mechanism to evaluate and
select negotiation candidates. In this mechanism, the acceptable candidates were
identified by use of motivation-based thresholds on objective scoring measures
first. Then, all negotiation issues are classified and the significance of the ne-
gotiation issues were considered. According to this classification, each partner’s
expected performance are evaluated and compared. Thus, all potential partners
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were judged and the most suitable partners for the agent can be selected. Also
in this mechanism, as an agent’s circumstance changes, the significance of each
negotiation issue will also be changed, and this changing will be considered in
the negotiation partners selection.

In [23], Brzostowski and Kowalczylk proposed a partners selection mecha-
nism based on the Case-Based Reasoning (CBR) theory [24] [25] and Fuzzy
Logic [26] [27]. According to the fact that similar problems usually have sim-
ilar solutions, the authors employed CBR to retrieve relevant cases from the
database and adapt them to fit new situations. Therefore, this mechanism is not
to solve the new problem but to predict the outcome of a future negotiation and
to match each new situation to a particular existing case. In this paper, the pre-
diction process was finished by aggregating historical negotiations’ records, and
the case matching process was completed by employing the fuzzy logic. Three
components, which were decision problems, possible acts and conceivable results,
in the negotiation were employed to evaluate each new case and match the new
case to an existing case.

However, to summarize previous researchers’ works, some limitations are
emerged. For instance, the case-based approach may not work well when the
negotiation environment becomes open and dynamic. The reasons behind of this
are the space limitations on the cases database and the faultiness of reason-
ing mechanisms. Also, the motivation-based approach may only work well for
the competitive negotiation because the decision of the significance on each ne-
gotiated issue is only based on agents’ own interesting, but does not consider
negotiation partners’ requirements. In order to improve the current partners se-
lection approaches and to extend their application domains, both a linear and
non-linear partners selection approaches are proposed in this paper based on the
extended dual concern model. Compared with previous researches, the contri-
butions of this research are to: (1) identify different potential cases of partners
selection in general negotiation; (2) be sensitive to the changes of circumstance
and suitable to work in open and dynamic negotiation environment; and (3) bal-
ance agents’ own benefits and their partners’ benefits. Thus, agents can have a
global view over all perspective partners during negotiation and can select their
preferable partners according to their own expectations.

3 Potential Partners Analysis in General Negotiations

3.1 The Extended Dual Concern Model

In [28], Zhang et al. proposed a dual concern model which is an outline about the
degrees of concern of an agent for agents’ own and partners’ outcomes. However,
this model just briefly presents the main trend of these degrees, not offering
any calculation method about how to decide the values of these degrees and
how to compare these degrees. To address these problems, we further extend
this dual concern model in order to allow agent to make reasonable decisions
on partners’ behaviors during negotiation. The extended dual concern model is
shown in Figure 1.
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Fig. 1. The extended dual concern model

In Figure 1, x-axis indicates the percentage of the self-concern of an agent
while y-axis is the percentage of other-concern from the agent. θ presents a
ReliantDegree (i.e. reflection of the collaborate degree), where θ ∈ [0◦, 90◦]. We
use selfness to represent the percentage of self-concern of an agent, which can
be calculated by cos(θ), and selflessness to represent the percentage of other-
concern, which can be evaluated by sin(θ). A ReliantDegree can illustrate the
level of collaboration between the agent and its potential partners. From the
extended model, we can find that there are two extreme cases. (1) When the
agent only emphases on its own outcome, its negotiation attitude is selfish (θ =
0◦); and (2) When the agent only care about its partners’ incomes, its attitude
is selfless (θ = 90◦).

From this model, it is clear that there are many other cases between selfish and
selfless negotiation behaviors. In subsection 3.2, a formal problem description
will be given. In subsection 3.3, potential cases in partner selection based on this
extended dual concern model will be analyzed in detail.

3.2 Problem Description

Suppose that there are n potential partners for an agent IDx in a MAS. If we
use a four-tuple px

i to present the ith potential partner for agent IDx, px
i can be

formally defined by the following equation

px
i =< IDi, GainRatiox

i , ContributionRatiox
i , ReliantDegreex

i > (1)

where IDi is the unique identification of the ith potential partner, and
GainRatiox

i , ContributionRatiox
i and ReliantDegreex

i are factors used to eval-
uate the potential partner IDi to be selected in negotiation. These three factors
are defined from Definitions 1 to 3, respectively.
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Definition 1. GainRatiox
i is the percentage of the benefit that agent IDx ob-

tains out of the global benefit upon the completion of the task, and can be calcu-
lated by Equation 2.

GainRatiox
i =

S

L
× 100% (2)

where GainRatiox
i ∈ [0, 100%], S denotes the benefit that agent IDx gains

by selecting agent IDi as its partners, and L denotes the global benefit by
completing the task.

Definition 2. ContributionRatiox
i is the percentage of the benefit that agent

IDi obtains out of the global benefit upon the completion of the task, and can be
calculated by Equation 3.

ContributionRatiox
i =

I

L
× 100% (3)

where ContributionRatiox
i ∈ [0, 100%], I denotes the benefit that agent IDi

gains by cooperating with agent IDx, and L denotes the global benefit by com-
pleting the task.

Definition 3. ReliantDegreex
i represents agent IDx’s attitude to the negoti-

ation, and also indicates the dynamic behavior of the agent, such as selfness,
selflessness or other cases. ReliantDegreex

i can be calculated by Equation 4.

ReliantDegreex
i = arctan(

Cri
x

Crx
i

) (4)

where ReliantDegree ∈ [0◦, 90◦], Cri
x indicates how agent IDx trusts agent

IDi, which can be defined as the trading success ratio from agent IDx to IDi

or can be assigned by the system based on the performance record of agent IDi,
and Cri

x indicates how agent IDi trusts agent IDx, which can be defined in the
similar way as Cri

x.
Then the collaborate degree between the agent IDx and its potential partner

IDi is generated as Equation 5

CollaborateDegreex
i = f(IDx, px

i ) (5)

By calculating the collaborate degree between agent IDx and all of its poten-
tial partners, the collaborate degree set (CollaborateDegreex) is generated as
follows:

CollaborateDegreex = {CollaborateDegreex
i }, i ∈ [1, n] (6)

3.3 Potential Partners Analysis

Figure 2 demonstrates the relationship between ContributionRatio and GainRa-
tio. From Definition 1 and Definition 2, we can see that GainRatio + Contri-
butionRatio ≤ 100%, so that all curves in Figure 2 must be located under the
curve of GainRatio + ContributionRatio = 100%.
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Fig. 2. Relationships between GainRatio and contributionRatio

In order to illustrate the relationship between parameters GainRatio and Con-
tributionRatio, and to summary agents’ possible negotiation behaviors, we spec-
ify some particular kinds of agents firstly. In general, as GainRatio increases, the
behaviors of potential partners can be classified into the following four categories
as shown in Figure 2.

1. As GainRatio increases, for the potential partner a, the ContributionRatio
increases in the first range until its maximum value is achieved, then the
ContributionRatio decreases to 0 continuously. For example, in stock mar-
kets, as the investors’ investment increases, the whole market’s benefit is
increases. When the investors’ investment overflows a threshold, the whole
market’s benefit will decrease because too much money is taken away by
investors and the remainder is not enough for further development.

2. As GainRatio increases, for the potential partner b, the ContributionRatio
decreases to 0 continuously. For example, in a biding model, as the buyer’s
utility increases, the seller’s utility decreases.

3. As GainRatio increases, for the potential partner c, the ContributionRatio
remains unchanged in the beginning and continuously decreases to 0 after a
threshold. For example, in a forest, when the number of trees cut down by the
woodchopper is smaller than a certain number, the local environment will
not be impacted. While the number of trees cut down by the woodchopper is
bigger than a certain number, the local environment will become more and
more worse as the number increased.

4. As GainRatio increases, for the potential partner d, the ContributionRa-
tio fluctuates and achieves 0 eventually. All agents whose behaviors do not
include in the above situations will be classified in this case.
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In general, a selfless agent will select the partner whose ContributionRatio
is the maximum value in Figure 2 and ignore the factor GainRatio, while a
selfish agent will select the partner based on GainRatio only. However, in most
cases, agents behave between these two extreme situations. An agent needs to
consider both own benefit and its partners’ benefit. In order to balance these two
extreme situations, an linear approach for partners selection in a more flexible
way is proposed in the next Section.

4 Partners Selection by Using a Linear Approach

In last section, we introduced the extended dual concern model. We also defined
three attributes to represent relationships between the agent and its potential
partners. Finally, we analyze four possible situations on potential partners’ be-
haviors and claim that the partners selection approach should balance all nego-
tiation participators’ benefits. In this section, based on the proposed extended
dual concern model and the analysis results, we proposed a linear approach to
select partners based on the relationship among negotiation participators.

In order to cover all potential cases in partners selection, we need consider not
only both GainRatio and ContributionRatio, but also the preference of the agent
on these two criterions. It is proposed that the agent’s preference on GainRatio
and ContributionRatio can be represented by a normalized weight. Let wg stands
for the weight on GainRatio, wc stands for the weight on ContributionRatio, and
wc + wg = 1. Then the collaborationDegree between agent IDx and its potential
partner IDi is defined as follows:

CollaborateDegreex
i = GainRatiox

i × wg + ContributionRatiox
i × wc (7)

The collaborationDegree (∈ [0, 1]) indicates the degree that the potential part-
ner should be selected by the agent. The bigger the collaborationDegree, the more
chance that the potential partner will be selected by the agent. In general, there
are three extreme cases on different combinations of wc and wg as follows:

– When wg = 0 and wc = 1, CollaborateDegree is calculated only based on
ContributionRatio, i. e. agent IDx’s attitude to negotiation is fully selfless.

– When wg = 1 and wc = 0, CollaborateDegree is calculated only based on
GainRatio, i. e. agent IDx’s attitude to negotiation is fully selfish.

– When wg = wc = 0.5, CollaborateDegree is calculated based on both Gain-
Ratio and ContributionRatio equally, i. e. agent IDx’s attitude to negotiation
is equitable.

– Besides above three cases, the restriction of wg + wc = 1 can also reflect
agent IDx’s attitude on GainRatio and ContributionRatio in other cases.

The weights wg and wc can be calculated by employing the value of Reliant-
Degree, which are defined by Equation 8 and Equation 9, respectively.

wg = cos2(ReliantDegree) (8)
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wc = sin2(ReliantDegree) (9)

These definitions about wg and wc can reflect the relationships between the
factor of ReliantDegree and the agent’ preference successfully. For example, as
shown in Figure 1,

– when ReliantDegree = 0◦, it is supposed that the agent IDx should perform
as selfness and only consider about its own benefits. According to Equations
from 7 to 9, wg = cos2(0◦) = 1, wc = sin2(0◦) = 0, and CollaborateDegreex

i

= GainRatiox
i , so the agent IDx selects its partners by considering only the

GainRatio, which accords with the agent’s expected behavior;
– when ReliantDegree = 45◦, the agent should consider both self-interest and

partners’ benefit equally. In this case, wg = cos2(45◦) = 0.5, wc = sin2(0◦) =
0.5, and CollaborateDegreex

i = (GainRatiox
i + ContributionRatiox

i )/2, so
the agent IDx plays an equitable strategy on partners selection;

– when ReliantDegree = 90◦, it is supposed that the agent IDx should perform
as a selfless agent and only considers about parters’ benefits. In this situa-
tion, wg = cos2(90◦) = 0, wc = sin2(90◦) = 1, and CollaborateDegreex

i =
ContributionRatiox

i , so the agent perform as selfless.

Finally, by combining the Equation 7 - Equation 9, the potential partners
are evaluated by considering the factors of GainRatio, ContributionRatio and
ReliantDegree. The collaborationDegree between the agent IDx and its potential
partner IDi is:

CollaborateDegreex
i = GainRatiox

i × cos2(ReliantDegreex
i ) +

ContributionRatiox
i × sin2(ReliantDegreex

i ) (10)

where CollaborateDegreex
i ∈ [0, 1].

Then by calculating each collaboration degree between the agent IDx and
its potential partners, the collaboration degrees set (CollaborateDegreex) are
generated, which is:

CollaborateDegreex = {CollaborateDegreex
i }, i ∈ [1, n] (11)

Finally, any sorting algorithm can be employed to select favorable partners or
exclude unsuitable partners from the collaborationdegree setCollaborateDegreex

for the agent IDx.
In this section, we proposed a linear approach for partners selection in multi-

agent negotiation. By employing the factor of ReliantDegreex
i and Equations

8 and 9, the relationships between the agent and its partners are captured and
used in the partners selection process. The advantages of this linear approach are
that (1) it is easy to be implemented and (2) it solves problems directly where
relationships of agents can be represented by linear functions. However, in some
cases, the relationships between agents and their partners cannot be represented
by a linear function. For example, when the negotiation issues are discrete such
as the cars’ colors or manufactories, the linear approach hardly can represent
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the problem efficiently and is not competent for new situation anymore. In order
to address this issue, we will introduce another non-linear partners selection
approach in next section, which employs the fuzzy logic mechanism to capture
the agent’s preference.

5 Partners Selection by Using a Non-linear Approach

In the last section, we proposed a linear approach to select partners for agents.
However, in some cases, human’s behavior cannot be modeled by a linear function
simply. So in order to mimic real world situation and generate more reasonable
selection results, we propose a non-linear approach for partners selection in this
section. We employ the fuzzy logic [26] [27] mechanism in the proposed non-linear
approach. The structure of this section is organized as follows. In subsection 5.1,
the principle of this non-linear approach is introduced and a basic framework of
the approach is proposed. From section 5.2 to 5.4, the methods of fuzzification,
approximate reasoning, and defuzzification are introduced in detail, respectively.

5.1 Framework of a Fuzzy-Based Approach

Based on the analysis in Section 3, we propose a non-linear approach that agents
can select their suitable partners dynamically by considering individual benefits,
global benefits and agents’ behaviors.

Fig. 3. The framework of the non-linear partners selection approach
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The framework of the non-linear approach for selecting most suitable part-
ners in MASs is graphically illustrated in Figure 3. There are five units in this
approach, which are: (1) a library of fuzzy functions, (2) a fuzzy rule base, (3) a
fuzzification module, (4) an approximate reasoning module, and (5) a defuzzifi-
cation module.

The input parameters of the framework are GainRatio, ContributionRatio
and ReliantRatio which have defined in Section 3. The output of this framework
provides suggestions to agent for partners selection by considering these three
factors.

5.2 Fuzzification

Fuzzy Membership Functions for Input Parameters: For these three in-
put parameters (GainRatio, ContributionRatio and ReliantDegree), the linguistic
states for them are defined as follows.

– GainRatio. For the input parameter GainRatio, five linguistic states are se-
lected and expressed by appropriate fuzzy sets which are {VerySmall, Small,
Medium, Large and VeryLarge}.
Figure 4 depicts these fuzzy sets as applied to parameter GainRatio. The
triangle membership function [29] is adopted here to define fuzzy mem-
berships. Fuzzy membership functions for fuzzy sets {VerySmall, Small,
Medium, Large,VeryLarge} are defined from Equation 12 to 16, respectively.

FV erySmall(x) =

{
20−x

20 0 ≤ x ≤ 20
0 x > 20

(12)

FSmall(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ≤ 10
x−10

20 10 < x ≤ 30
50−x

20 30 < x ≤ 50
0 x > 20

(13)

FMedium(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ≤ 30
x−30

20 30 < x ≤ 50
70−x

20 50 < x ≤ 70
0 x > 70

(14)

FLarge(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ≤ 50
x−50
20 50 < x ≤ 70

90−x
20 70 < x ≤ 90

0 x > 90

(15)

FV eryLarge(x) =

{
0 x ≤ 80
x−80

20 x > 80
(16)

where x ∈ [0, 100]
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Fig. 4. Fuzzy quantization of range [0, 100] for GainRatio

Fig. 5. Fuzzy quantization of range [0, 100] for ContributionRatio

– ContributionRatio. For the parameter ContributionRatio, both the fuzzy
sets and membership functions are same as GainRatio’s (Equation 12-16).
Figure 5 depicts the fuzzy sets as applied to parameter ContributionRatio.

– ReliantDegree. For the parameter ReliantDegree, five linguistic states are
selected and expressed by appropriate fuzzy sets, which are {Complete Self-
Driven, Self-Driven, Equitable, External-Driven, Complete External-Driven}.
Figure 6 depicts these fuzzy sets as applied to parameter ReliantDegree. Fuzzy
membership functions for fuzzy sets {Complete Self-Driven, Self-Driven, Eq-
uitable, External-Driven, Complete External-Driven} are defined from Equa-
tion 17 to 21, respectively.

FCompleteSelfDriven(x) =

{
22.5−x
22.5 0 ≤ x ≤ 22.5

0 x > 22.5
(17)
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Fig. 6. Fuzzy quantization of range [0◦, 90◦] for ReliantDegree

FSelfDriven(x) =

⎧
⎪⎨

⎪⎩

x
22.5 0 < x ≤ 22.5
45−x
22.5 22.5 < x ≤ 45

0 x > 45
(18)

FEquitable(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ≤ 22.5
x−22.5

22.5 22.5 < x ≤ 45
67.5−x

22.5 45 < x ≤ 67.5
0 x > 67.5

(19)

FExternalDriven(x) =

⎧
⎪⎨

⎪⎩

0 x ≤ 45
x−45
22.5 45 < x ≤ 67.5
90−x
22.5 67.5 < x ≤ 90

(20)

FCompleteExternalDriven(x) =

{
0 x ≤ 67.5
x−67.5

22.5 x > 67.5
(21)

where x ∈ [0◦, 90◦].

Fuzzy Membership Functions for Output Parameters: For the output pa-
rameter CollaborateDegree, five linguistic states are selected and expressed by cor-
responding fuzzy sets {Averse,Reluctant, Indifferent,Acceptable, andAnticipant}.
Figure 7 depicts these fuzzy sets as applied to parameter CollaborateDegree. The
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fuzzy membership functions for parameter CollaborateDegree are defined through
Equation 22-26.

FAverse(x) =

{
20−x

20 0 ≤ x ≤ 20
0 x > 20

(22)

FReluctant(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ≤ 10
x−10
20 10 < x ≤ 30

50−x
20 30 < x ≤ 50

0 x > 20

(23)

FIndifferent(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ≤ 30
x−30

20 30 < x ≤ 50
70−x

20 50 < x ≤ 70
0 x > 70

(24)

FAcceptable(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ≤ 50
x−50

20 50 < x ≤ 70
90−x

20 70 < x ≤ 90
0 x > 90

(25)

FAnticipant(x) =

{
0 x ≤ 80
x−80

20 x > 80
(26)

where x ∈ [0, 100]

5.3 Approximate Reasoning

The approximate reasoning is hired to calculate output membership values,
which can further be used to compute corresponding output values. The ap-
proximate reasoning is based on the use of rules in the rule base.

Fig. 7. Fuzzy quantization of range [0, 100] for CollaborateDegree
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Rule Base: A rule base is a matrix of combinations of each of the input lin-
guistic parameters. The rule bases in this approach are displayed in Table 1-5.

Table 1. Fuzzy rule base (ReliantDegree=Complete Self-Driven)

GainRetio ContributionRetio CollaborateDegree
VerySmall Any Averse

Small Any Reluctant
Medium Any Indifferent
Large Any Acceptable

VeryLarge Any Anticipant

Table 2. Fuzzy rule base (ReliantDegree=Self-Driven)

GainRetio ContributionRetio CollaborateDegree
VerySmall VeryLarge Reluctant

Others Averse
Small VeryLarge Indifferent

Others Reluctant
Medium VeryLarge Acceptable

Large Acceptable
Others Indifferent

Large VerySmall Indifferent
Others Acceptable

VeryLarge VerySmall Acceptable
Others Anticipant

The Determination of Output Membership Values: Each entry of the
rule base is a rule, which is defined by AND ing three linguistic input parameters
to produce an individual output, in the form of:

IF((F (GainRatio) = α)AND(F (ContributionRatio) = β)
AND(F (ReliantDegree) = γ))

THENF (collaborateDegree) = δ

(27)

where, α ∈ {VerySmall, Small, Medium, Large, VeryLarge}, β ∈ {VerySmall,
Small, Medium, Large, VeryLarge}, γ ∈ {Complete Self-Driven, Self-Driven,
Equitable, External-Driven, Complete External-Driven}, δ ∈ {Averse, Reluctant,
Indifferent, Acceptable, Anticipant}, and F(collaborateDegree) denotes a fuzzy
set into which the parameter collaborateDegree is mapped.

An output membership value μδ(ν) can be calculated by Equation 28.

μδ(ν) = MIN(μα(GainRatio), μβ(ContributionRatio),
μγ(ReliantDegree))

(28)
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Table 3. Fuzzy rule base (ReliantDegree=Equitable)

GainRetio ContributionRetio CollaborateDegree
VerySmall VeryLarge Indifferent

Large Reluctant
Medium Averse
Small Averse

VerySmall Averse
Small VeryLarge Acceptable

Large Indifferent
Medium Reluctant
Small Averse

VerySmall Averse
Medium VeryLarge Anticipant

Large Acceptable
Medium Indifferent
Small Reluctant

VerySmall Averse
Large VerySmall Anticipant

Large Anticipant
Medium Acceptable
Small Indifferent

VerySmall Reluctant
VeryLarge VerySmall Anticipant

Large Anticipant
Medium Anticipant
Small Acceptable

VerySmall Indifferent

Table 4. Fuzzy rule base (ReliantDegree=External-Driven)

ContributionRetio GainRetio CollaborateDegree
VerySmall VeryLarge Reluctant

Others Averse
Small VeryLarge Indifferent

Others Reluctant
Medium VeryLarge Acceptable

Large Acceptable
Others Indifferent

Large VerySmall Indifferent
Others Acceptable

VeryLarge VerySmall Acceptable
Others Anticipant
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Table 5. Fuzzy rule base (ReliantDegree=Complete External-Driven)

ContributionRetio GainRetio CollaborateDegree
VerySmall Any Averse

Small Any Reluctant
Medium Any Indifferent
Large Any Acceptable

VeryLarge Any Anticipant

5.4 Defuzzification

There are many defuzzification approaches. The centroid defuzzification method
[29] is one approach to defuzzify the output membership values.

DV =
∑k

i=1(νi × μ(νi))∑k
i=1 μ(νi)

(29)

where μ(νi) is the ith output membership value, νi is its corresponding output
value, and k is the number of fuzzy rules which are activated.

DV is the final output value of collaborateDegree in a particular case. DV
can be used to evaluate the relationship between the agent and its potential
partners, and can also be used as an important factor for selecting or adopting
a most suitable partner for an agent in a particular case.

5.5 Summary

In this section, we proposed a non-linear approach for the partners selection.
By comparing with the linear approach introduced in Section 4, the non-linear
approach is more logical and accurate. However, it needs more complex process
to achieve the selection results. In next section, we will give some examples to
test these two proposed approaches under different situations.

6 Case Study

In this session, four scenarios are demonstrated. In each example, agent g is
going to select the most suitable partner from three potential partners (agent
ga, gb and gc). These examples will illustrate how the proposed approaches select
the most suitable partner for the agent g.

6.1 Scenario 1

In scenario 1, all of three potential partners share a common ReliantDegree,
which is 0◦. The agent g is a Complete Self-Driven agent so that agent ga should
be selected as the most suitable partner because it can contribute the highest
GainRatio to agent g among three potential partners. All input parameters for
the three potential partners are shown in Table 8.
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Table 6. Input parameters for scenario 1

Partner GainRatio ContributionRatio ReliantDegree
ga 80% 20% 0◦

gb 50% 50% 0◦

gc 20% 80% 0◦

In Table 7, the selection results by using the proposed linear function are
presented. Since wg = cos2(0◦) = 1 and wc = sin2(0◦) = 0, the GainRatio is
used to make the final decision. Therefore, agent ga is selected by the agent g as
the most preferable partner, which is same as the estimation.

Table 7. Output for scenario 1 by using the linear function

Partner wg × GainRatio wc × ContributionRatio CollaborateDegree
ga 0.8 0 0.8
gb 0.5 0 0.5
gc 0.2 0 0.2

The results for scenario 1 by using the proposed non-linear function are shown
in Table 8. According to the selection results generated by the proposed ap-
proach, agent ga is the most suitable partner which is same as the selection
result by the linear approach.

Table 8. Output for example 1 by using the non-linear function

Partner ReliantDegree GainRatio ContributionRatio CollaborateDegree Defuzzification
Complete

ga Self-Driven=1 Large=0.5 Small=0.5 Acceptable=0.5 70%
Complete

gb Self-Driven=1 Medium=1 Medium=1 Indifferent=1 50%
gc Self-Driven=1 Small=0.5 Large=0.5 Reluctant=0.5 30%

6.2 Scenario 2

In scenario 2, all of three potential partners share a common ReliantDegree, which
is 90◦. Both the GainRatio and ContributionRatio are same as scenario 1. The
agent is a Complete External-Driven agent so that agent gc should be selected
as the most suitable partner because it has the largest ContributionRatio. All
input parameters for the three potential partners are shown in Table 9.

Since ReliantDegree is 90◦, the wg = 0 and wc = 1 according to Equations
8 and 9. The agent g selects partner based on ContributionRatio only. The
selection results by using the linear function are displayed in Table. According
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Table 9. Input parameters for scenario 2

Partner GainRatio ContributionRatio ReliantDegree
ga 80% 20% 90◦

gb 50% 50% 90◦

gc 20% 80% 90◦

to these results, the agent gc should be selected as the most suitable partner
for the agent g. This selection result is exactly same as the output by using the
non-linear function as shown in Table.

Table 10. Output for scenario 2 by using the linear function

Partner wg × GainRatio wc × ContributionRatio CollaborateDegree
ga 0 0.2 0.2
gb 0 0.5 0.5
gc 0 0.8 0.8

Table 11. Output for scenario 2 by using the non-linear function

Partner ReliantDegree ContributionRatio GainRatio CollaborateDegree Defuzzification
Complete

ga External-Driven=1 Small=0.5 Large=0.5 Reluctant=0.5 30%
gb External-Driven=1 Medium=1 Medium=1 Indifferent=1 50%
gc Self-Driven=1 Large=0.5 Small=0.5 Acceptable=0.5 70%

6.3 Scenario 3

In scenario 3, ReliantDegree = 45◦ and all others parameter are same as sce-
nario 1. In this case, the agent g is an Equitable agent so that the estimation
partner is any one of the potential partners by considering both GainRatio and
ContributionRatio equally. All input parameters for the three potential partners
are shown in Table 12.

Table 12. Input parameters for example 3

Partner GainRatio ContributionRatio ReliantDegree
ga 80% 20% 45◦

gb 50% 50% 45◦

gc 20% 80% 45◦

According to the proposed linear function, since ReliantDegree = 45◦, then
wg = wc = 0.5. The CollaborateDegree for all potential partners are exactly
same (0.5) as shown in Table 13. So either one could be selected as the most
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Table 13. Output for scenario 3 by using the linear function

Partner wg × GainRatio wc × ContributionRatio CollaborateDegree
ga 0.4 0.1 0.5
gb 0.25 0.25 0.5
gc 0.1 0.4 0.5

Table 14. Output for scenario 3 by using the non-linear function

Partner ReliantDegree GainRatio ContributionRatio CollaborateDegree Defuzzification
ga Equitable=1 Large=0.5 Small=0.5 Indifferent=0.5 50%
gb Equitable=1 Medium=1 Medium=1 Indifferent=1 50%
gc Equitable=1 Small=0.5 Large=0.5 Indifferent=0.5 50%

preferable partner for the agent g. The non-linear approach’s selection results
are displayed in Table 14. It also suggests that any potential partner could be
the most suitable partner in this case.

6.4 Scenario 4

In scenario 4, all of three potential partners share common GainRatio and Con-
tributionRatio, but with different ReliantDegree. The agent g has different atti-
tudes to its potential partners. For potential partner ga, agent g performs as a
Complete Self-Driven agent so that only the GainRatio (80%) will be used to
select the most suitable partner. For potential partner gb, agent g performs as a
Equitable agent so that both GainRatio (80%) and ContributionRatio (20%) will
be used to evaluate whether gb could be chosen as a suitable partner. Therefore,
the final benefit by considering both GainRatio and ContributionRatio for gb

should be between 20% and 80%. For potential partner gc, agent g performs as
a Complete External-Driven agent so that only the benefit of ContributionRatio
(20%) will be used for the selection of gc as a partner. By comparing the three
cases, agent ga should be selected as the most suitable partner because agent g
would gain the largest benefit(80%) when collaborating with agent ga. All input
parameters for the three potential partners are shown in Table 15.

By employing the proposed linear approach, partner ga is selected as the
most suitable partner shown in Table 16. Because these three partners can offer
same GainRatio and ContributionRatio, the relationships between the agent g
and each one of them are crucial for the partner selection in this case. As the

Table 15. Input parameters for scenario 4

Agent GainRatio ContributionRatio ReliantDegree
ga 80% 20% 0◦

gb 80% 20% 45◦

gc 80% 20% 90◦
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Table 16. Output for scenario 4 by using the linear function

Partner wg × GainRatio wc × ContributionRatio CollaborateDegree
ga 0.8 0 0.8
gb 0.4 0.1 0.5
gc 0 0.2 0.2

Table 17. Output for scenario 4 by using the non-linear function

Agent ReliantDegree GainRatio ContributionRatio CollaborateDegree Defuzzification
ga Self-Driven=1 Large=0.5 Small=0.5 Acceptable=0.5 70%
gb Equitable=1 Large=0.5 Small=0.5 Indifferent=0.5 50%
gc External-Driven=1 Small=0.5 Large=0.5 Reluctant=0.5 30%

GainRatio is bigger than ContributionRatio, and the agent g’s attitude on the
partner ga is selfness, so ga is the most preferable partner. In Table 17, the
selection results by employing the non-linear function are presented, which is
same as the linear approach.

Therefore, from these four different scenarios, it can be seen that by consider-
ing the factors of GainRatio, ContributionRatio and ReliantDegree between the
agent and its potential partners, both of our proposed partner selection mech-
anisms can be employed by agents to generate reasonable judgement on their
potential partners and to select the most suitable partner for the agent. Also,
it is noticed that both of the proposed approach are easy to be administrated
by agents in an dynamic negotiation environment to filter partners according to
agents’ expectations. However, the proposed linear and non-linear approaches
have their own individual merits. The linear approach is suitable for the nego-
tiation environment where the situation is not complex and the requirement on
accuracy is not very severe, but asking for a quicker responds on any change
of the situation. While the non-linear approach can be employed in a more
complex negotiation, where agents’ behaviors cannot be represented by linear
function simply. The non-linear function is sensitive to the change of situation
and can generate more reasonable and accurate selection results by employing
the predefined fuzzy linguistic languages and membership functions. Therefore,
the purpose of proposing two partners selection functions is to satisfy all kinds
of requirements in different negotiation environments.

7 Conclusion and Further Work

In this paper, we identified four potential cases of relationships between an agent
and its potential partners. Both a linear and non-linear partner selection ap-
proaches were proposed. For the linear approach, the ReliantDegree is employed
to calculate the normalized weights for both GainRatio and ContributionRatio.
Agents attitudes on their potential partners are represented and controlled by
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these two normalized weights. For the non-linear approach, a framework is pro-
posed which consists a fuzzification module, a fuzzy rule base, an approximate
reasoning module, a defuzzification module, and a library of fuzzy membership
functions. All of the fuzzy membership functions for corresponding fuzzy sets
have been carefully defined and rules of fuzzy logic operations during the proce-
dure of approximate reasoning have also been defined.

The further works on this research will focus on how to extend the current
approaches for the partners selection under the circumstances of (1) when con-
sidering the factors of punishment, compensation and successful ratio; and (2)
when considering the issue of multi-attribute negotiation.
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Abstract. In practical data mining problems high-dimensional data has
to be analyzed. In most of these cases it is very informative to map and
visualize the hidden structure of complex data set in a low-dimensional
space. The aim of this paper is to propose a new mapping algorithm
based both on the topology and the metric of the data.

The utilized Topology Representing Network (TRN) combines neural
gas vector quantization and competitive Hebbian learning rule in such a
way that the hidden data structure is approximated by a compact graph
representation. TRN is able to define a low-dimensional manifold in the
high-dimensional feature space. In case the existence of a manifold, mul-
tidimensional scaling and/or Sammon mapping of the graph distances
can be used to form the map of the TRN (TRNMap).

The systematic analysis of the algorithms that can be used for data
visualization and the numerical examples presented in this paper demon-
strate that the resulting map gives a good representation of the topology
and the metric of complex data sets, and the component plane represen-
tation of TRNMap is useful to explore the hidden relations among the
features.

Keywords: Data visualization, Dimensionality reduction, Topology
Representing Networks, Isomap, CDA.

1 Introduction

1.1 Classical Dimension Reduction Algorithms

Exploratory Data Analysis (EDA) is an approach/philosophy for data analysis
that employs a variety of techniques (mostly graphical) to maximize insight into
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a data set, uncover underlying structure, extract important variables, detect out-
liers and anomalies, and test underlying assumptions. The seminal work in EDA
is written by Tukey [30]. Most EDA techniques are graphical in nature with a
few quantitative techniques [21]. The role of EDA is to open-mindedly explore
the data. The main defect of EDA is arising from the limit of the visualization.
Data can be thought as points in a high-dimensional vector space, with each di-
mension corresponding to an attribute of the observed object. Because humans
simply can not see high-dimensional data, it is necessary to reduce the dimen-
sionality of the data. The reduction of dimensionality of the feature space is also
important because of the curse of dimensionality. In a nutshell, same number
of examples fill more of the available space when the dimensionality is low, and
its consequence is that exponential growth with dimensionality in the number
of examples is required to accurately estimate a function. Hence, dimensionality
reduction is an important task of (visual) data mining.

The goal of dimensionality reduction is to map a set of observations from
a high-dimensional space (D) into a low-dimensional space (d, d � D) pre-
serving as much of the intrinsic structure of the data as possible. Let X =
{x1,x2, . . . ,xN} be a set of the observed data, where xi denotes the i-th ob-
servation (xi = [xi,1, xi,2, . . . , xi,D]T ). Each data object is characterized by
D dimensions, so xi,j yields the j-th (j = 1, 2, . . . , D) attribute of the i-th
(i = 1, 2, . . . , N) data object. Dimensionality reduction techniques transform
data set X into a new data set Y with dimensionality d (Y = {y1,y2, . . . ,yN},
yi = [yi,1, yi,2, . . . , yi,d]T ). In the reduced space many data analysis tasks (e.g.
classification, clustering, image recognition) can be carried out faster than in the
original data space.

Three types of dimensionality reduction methods can be distinguished: (i)
metric methods try to preserve the distances of the data defined by a metric,
(ii) non-metric methods try to preserve the global ordering relations of the data,
(iii) other methods that differ from the previously introduced two groups.

The most widely applied dimensionality reduction method is the Principal
Component Analysis (PCA) [10,12], a member of the last class. PCA represents
the data as linear combinations of a small number of basis vectors. The method
finds the projection that stores the largest variance possible in the original data
and rotates the set of the objects such that the maximum variability becomes
visible. Accordingly, PCA tries to preserve the variance of the input data ele-
ments. Geometrically, PCA transforms the data into a new coordinate system
such that the greatest variance by any projection of the data comes to lie on
the first coordinate, the second greatest variance on the second coordinate, and
so on. The main steps of the PCA are the follows: (1) subtract the mean from
each of the data dimensions (2) calculate the covariance matrix (3) calculate the
eigenvectors and the eigenvalues of the covariance matrix (4) choose the main
significant eigenvectors (5) derive the new data set from the significant eigen-
vectors and from the original data matrix. Independent Component Analysis
(ICA) [4] is similar to PCA, except that it tries to find components that are
independent.
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In the following let us have a closer look at the mostly used metric dimension-
ality reduction methods. Multidimensional scaling (MDS) [3] refers to a group
of unsupervised data visualization techniques. Given a set of data in a high-
dimensional feature space, MDS maps them into a low-dimensional (generally
2-dimensional) data space in a way that objects that are very similar to each
other in the original space are placed near each other on the map, and objects
that are very different from each other are placed far away from each other.
There are two types of MDS: (i) metric MDS and (ii) non-metric MDS. While
metric MDS discovers the underlying structure of data set by preserving similar-
ity information (pair wise distances) among the data objects, non-metric MDS
attempts to preserve the rank order among the dissimilarities.

Sammon mapping (SM) [27] is a metric, nonlinear dimensionality reduction
method which maps the set of points in a high-dimensional vector space onto a
2-dimensional output space. It tries to optimize the cost function that describes
how well the pairwise distances in a data set are preserved. The Sammon stress
function (distortion of the Sammon projection) can be written as:

ESM =
1

N∑
i<j

d∗i,j

N∑

i<j

(d∗i,j − di,j)2

d∗i,j
, (1)

where d∗i,j denotes the distance between the vectors xi and xj , and di,j respec-
tively for yi and yj .

1.2 Topology Based Visualization Techniques - Geodesic Distance
Measures

Dimensionality reduction methods in many cases are confronted with low-di-
mensional structures hidden in the high-dimensional space. In these cases the
Euclidean distance, which is the length of the straight line between two points,
is not suitable to compute distances among the data points. The problem of the
Euclidean distance is that this straight line can go through shortcuts outside the
data cloud. The geodesic distance between two points of manifold is computed
in such a way that it always goes along the manifold. Using this distance it
can be given more essential description about the data distances. Obviously, in
many cases only a few points of the manifold are known. In these cases the
geodesic distances can be approximated by computing the graph distances [2].
To compute graph distances a graph should be built on the data. There are
two basic variations to construct the adjacency graph: (i) ε-neighboring and (ii)
k-neighboring. In the case of the first approach objects xi and xj are connected
by an edge, if ‖xi − xj‖2 < ε, where the norm is the Euclidean norm. In the
second case objects xi and xj are connected by an edge if xi is among the k-
nearest neighbors of xj or xj is among the k-nearest neighbors of xi. The edges
of the graph are weighted with their Euclidean lengths, so the graph distance
is obtained as the shortest path for each pair of points: given a set of objects
or representatives (X), the graph distance between two objects xi,xj ∈ X is
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the length of the shortest paths of X joining xi and xj . Figure 1 illustrates a
2-dimensional manifold embedded in a 3-dimensional vector space. It can be seen
that in this case the the similarity measure based on the Euclidean distance not
properly characterizes the distance of the selected two points.

Fig. 1. The Euclidean (solid line) and the graph distance (broken line) of two objects
of a manifold

The Isomap algorithm proposed by Tenenbaum et al. in 2000 [29] is based on
such a distance measure. Isomap deals with finite data sets of points in R

D which
are assumed to lie on a smooth submanifold Md (d � D). The aim of this method
is to preserve the intrinsic geometry of the data set and visualize the data in a
low-dimensional feature space. For this purpose Isomap calculates the geodesic
distances between all data points and then projects them into a low-dimensional
vector space using the method of MDS. Isomap consists of three major steps.
(1) Construct the neighborhood graph of the data by using the k-neighboring
or ε-neighboring approach. (2) Compute the geodesic distances between every
pair of objects. (3) Construct a d-dimensional embedding of the data points.
For the low-dimensional (generally d = 2) visualization Isomap utilizes MDS. In
this case the multidimensional scaling is not based on the Euclidean distance,
but it utilizes the previously computed geodesic distances. Isomap uses a non-
Euclidean metric for mapping, therefore a nonlinear projection is obtained as a
result. However, if the first step of the Isomap algorithm is applied to a multi-
class data set, several disconnected subgraphs can be formed, thus the MDS can
not be performed on the whole data set. Wu and Chan [32] give an extension
of the Isomap solving this problem. However, real-word data are often noisy.
Applying Isomap to noisy data shows also some limitations.

1.3 Application of Vector Quantization in Visualization Techniques

The previously presented metric algorithms are sensitive to noise and outliers
and are not applicable to large data sets due to the numerical complexity of the
algorithms and the need for the calculation of pairwise (in some cases geodesic)
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distances among each data. To handle these difficulties it is suggested to execute
a vector quantization (VQ) step to define representatives for the data and thereby
to reduce the computational time and handle noise and outliers.

The Self-Organizing Map (SOM) [13] is one of the most popular neural net-
work models. The main goal of SOM is to transform a high-dimensional pat-
tern into a low-dimensional discrete map in a topologically ordered grid. The
2-dimensional grids may be arranged in a rectangular or a hexagonal structure.
Actually, the SOM is a neural network, where each neuron is represented by a
D-dimensional weight vector. Creating and utilizing the SOM means two ba-
sic methods: (1) training process and (2) mapping process. During the training
process the weight vectors have to be initialized first (e.g. randomly or sample
initialization). After that given a random sample from the training data set, the
best matching unit (BMU) in the SOM is located. BMU is the closest neuron to
the selected input pattern based on the Euclidean distance. The weights of BMU
and neurons closest to it in the SOM grid are then updated towards the sample
vector in the input space. The coverage of the change decreases with time. BMU
and its neighboring neurons in the SOM grid are updated towards the sample
object based on the following formula:

wi (t + 1) = wi (t) + hc,i (t) [x (t) − wi (t)] , (2)

where t denotes time, the wi denotes the neurons in the grid, the x(t) is the the
random sample objects at time t and hc,i (t) yields the neighborhood function
about the winner unit c at time t.

There is a variety of different kinds of visualization techniques available for the
SOM. (e.g. U-matrix [31], component planes). Component planes are visualized
by taking from each weight vector the value of the component (attribute) and
depicting this as a color or as a height on the grid. SOM can handle the missing
values, but when the map structure does not match the input data structure,
SOM is not able to preserve the topology of the input data structure.

There are many algorithms that combines the different visualization tech-
niques with the topology representation possibilities. The method Isotop [16]
can be seen as a variation of SOM with a data-driven topology grid. Firstly,
Isotop performs a vector quantization step in order to reduce the number of
the data. Secondly, Isotop builds a graph structure based on the k-neighboring
or ε-neighboring. Finally, Isotop performs a non-metric dimensionality reduc-
tion. This process uses the graph distances defined by the previously calculated
neighborhood connections.

Curviliear Component Analysis (CCA) [5] algorithm was proposed as an im-
provement of the Kohonen Self-Organizing Maps, in that the output lattice has
no fixed structure predetermined. CCA algorithm performs two tasks separately:
(1) a vector quantization and (2) a nonlinear projection of these quantized vec-
tors (centroids) onto a d-dimensional output space. After mapping of the cen-
troids the full data set is mapped on the nonlinear discrete subspace defined by
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the mapped centroids. CCA maps the data by minimizing the topology error
function defined as:

ECCA =
1
2

N∑

i<j

(
d∗i,j − di,j

)2
F (di,j) , (3)

where d∗i,j denotes the distance between the vectors xi and xj , and di,j respec-
tively for yi and yj . F is a decreasing function of di,j (F : R

+ → [0, 1]). The
function F allows the local topology to be favored with respect to the global
topology.

Curvilinear Distances Analysis (CDA) [15] is the nonlinear variant of CCA.
While CCA is based on the Euclidean distance, CDA utilizes the curvilinear
(graph) distance.

Although most of the algorithms utilize the previously presented two ap-
proaches (ε-neighboring and k-neighboring) for the construction of the represen-
tative graph of the data set, there are other possibilities to disclose the topology
of the data, too. Topology representing networks refers to a group of methods
that generate a compact topology preserving maps for different data sets. The
topology representative methods combine the neural gas (NG) [19] vector quan-
tization method and the competitive Hebbian learning rule [9]. For a given data
distribution firstly a cloud will be created by running the neural gas algorithm
and then the topology is generated by the competitive Hebbian learning rule.
The methods generate their topology map as a result.

There are many methods published in the literature proposing to capture
the topology of the given data set. Martinetz and Shulten [20] showed how the
simple competitive Hebbian rule forms topology representing networks. The al-
gorithm of Topology Representing Network (TRN) firstly selects some random
points (weights) in the input space. The number of weights is a predefined pa-
rameter. The algorithm then iteratively selects an object from the input data
set randomly and moves all weights closer to this pattern. After this step, the
two weights closest to the randomly selected input pattern will be connected.
Finally, edges exceeding a predefined age are removed. This iteration process is
continued until a termination criterion is satisfied. The algorithm results in the
Topology Representing Network.

Dynamic Topology Representing Networks (DTRN) were introduced by Si
at al. [28]. In this method the topology graph incrementally grows by adding
and removing edges and vertices. The algorithm starts with only one node. The
algorithm examines a vigilance test in each iteration. If the nearest (winner) node
to the randomly selected input pattern fails this test, a new node is created and
this new node is connected to the winner. If the winner passes the vigilance test,
the winner and its adjacent neighbors are moved closer to the selected input
pattern. In this second case, if the winner and the second closest weights are
not connected, the algorithm creates an edge between them. Similarly to the
TRN algorithm DTRN also removes those connections whose age achieves a
predefined threshold. The most important input parameter of DTRN algorithm
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is the vigilance threshold. This vigilance threshold gradually decreases from an
initial value to a final value.

Weighted Incremental Neural Network (WINN) [22] produces a weighted con-
nected net. This net consists of weighted nodes connected by weighted edges.
This algorithm starts with two randomly selected nodes from the input pattern.
In each iteration the algorithm selects a pattern from the input data set, and the
nearest node to this object and its direct topological neighbors move towards
the selected object. If the nearest node and the other n − 1 nearest nodes are
not connected, the algorithm establishes a connection between them. The ages
and the weight-variables of edges, the error-variables and the weights of nodes
are updated step by step. This method inserts a new node in the net when the
number of the generated input pattern is a multiple of a predefined λ parameter.
Similarly to the previous algorithms WINN also removes the ’old’ connections.

In the literature there are a few dimensionality reduction methods that uti-
lizes the combination of the neural gas and the competitive Hebbian learning
rule. The OVI-NG algorithm [7] is an enhancement over CCA. It utilizes the
Euclidean distance and performs a non-metric dimensionality reduction method
that preserves the neighborhood relationships between the representative ele-
ments defined by the NG algorithm and the input data elements. The GNLP-NG
algorithm [8] is an extension of the OVI-NG as it uses graph distances instead
of the Euclidean ones.

1.4 Motivation

All these methods seem a good choice for dimensionality reduction, but each of
them has some disadvantages. When the data set contains nonlinear structure,
PCA, ICA and classical MDS (based on Euclidean distance) are not applicable.
Isomap cannot model multi-class problems and it is not efficient on large and
noisy data sets. The main disadvantage of Isotop, OVI-NG and GNLP-NG meth-
ods are that they use a non-metric mapping method and thereby only the rank
ordering of the representatives is preserved during the mapping process. The
SOM has a predefined and limited structure of the neurons. Although CCA and
CDA are a more complicated techniques, they need to be well parameterized [17].

In this paper a new robust method for data exploration is proposed. This
method aims to fulfill the following three criterions: (i) give a low-dimensional
representation of the data, (ii) preservation of the metric of the input data space,
and (iii) preservation of the intrinsic data structure (topology). The proposed
method as vector quantization and topology exploration utilizes the Topology
Representing Network algorithm, and it also exploits the main advantages of
dimensionality reduction methods. As a result it gives compact low-dimensional
topology preserving feature maps to explore the hidden structure of data.

2 Topology Representation of High-Dimensional Data

The previously presented systematic overview showed that visualization algo-
rithms can be defined as combinations of vector quantization, distance calculation,
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and mapping algorithms. As vector quantization the well-knownk-means and neu-
ral gas algorithms can be used. The distances can be calculated based on either Eu-
clidean norm or graph distance. The graph distance can be calculated based on the
graphs arising from the ε-neighboring,k-neighboring or theTopologyRepresenting
Network. In the following this algorithm is presented.

The combination of the neural gas algorithm and the competitive Hebbian
rule gives a powerful tool for the topology representation. In contrast to the k-
neighboring and to the ε-neighboring it also considers the distribution of the data
elements. Although, the TRN, DTRN and WINN algorithms are quite similar,
the TRN algorithm gives the most robust representation of the data.

Given a set of the data (X = {x1,x2, . . . ,xN}, xi ∈ R
D, i = 1, . . . , N) and a

set of neural units (W = {w1,w2, . . . ,wn}, wi ∈ R
D, i = 1, . . . , n). The TRN

algorithm distributes the pointers wi between the data objects by the the neural
gas algorithm, and forms connections between them by applying competitive
Hebbian rule. The run of the algorithm results in a topology map of the data.
The topology map means a graph G = (W,C), where W denotes the nodes
(neural units, centres, representatives) quantified by the neural gas algorithm
and C yields the set of edges between them.

The TRN Algorithm

1. Initialize the units wi randomly. Set all connection strengths ci,j to zero. Set
t = 0.

2. Select an input pattern x with equal probability for each x. Increase the
iteration step t = t + 1.

3. For each unit wi determine the number ki of units wj with

‖x − wj‖ < ‖x − wi‖ (4)

by determining the sequence (i0, i1, . . . , in−1) with

‖x − wi0‖ < ‖x − wi1‖ < . . . < ‖x − win−1‖. (5)

4. Update the units wi according to the neural gas algorithm by setting

wnew
i = wold

i + ε · e−ki/λ
(
x − wold

i

)
, i = 1, . . . , n (6)

5. If a connection between the first and the second closest unit to x does not ex-
ist already (ci0,i1 = 0), create a connection between them by setting ci0,i1 = 1
and set the age of this connection to zero by ti0,i1 = 0. If this connection
already exists (ci0,i1 = 1), set ti0,i1 = 0, that is, refresh connection of the
units i0 - i1.

6. Increment the age of all connections of wi0 by setting ti0,j = ti0,j + 1 for all
wj with ci0,j = 1.

7. Remove those connections of unit wi0 the age of which exceeds the parameter
T by setting ci0,j = 0 for all wj with ci0,j = 1 and ti0,j > T .

8. If t < tmax go back to step 2.
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The TRN algorithm combines the neural gas algorithm with the competitive
Hebbian rule. Steps 1-5 (without setting the connection strengths ci,j to zero)
and step 8 describe the neural gas algorithm. How the connections of the objects
are formed is based on the Hebbian rule.

The algorithm has many parameters. The number of the iterations (tmax)
is determined by the user. The parameter λ, the step size ε and the lifetime
T is dependent on the number of the iteration. This time dependence can be
expressed by the following general form:

g(t) = gi

(
gf

gi

)t/tmax

(7)

The paper [20] gives good suggestions to tune these parameters.

3 Visualization of the TRN

This section proposes an algorithm for the visualization of Topology Represent-
ing Networks. The section includes the presentation of the applied dimensionality
reduction method and the proposed algorithm.

The main goal of the proposed algorithm is to preserve both the topology
and the metric of the input data set. For this purpose it combines the main
benefits of the topology representing networks with a metric dimensionality re-
duction method. Although, the dimensionality reduction methods offer several
low-dimensional visualization techniques for the presentation, we suggest to use
a metric dimensionality reduction method to preserve the the metric of the data
set. To achieve this purpose can be used for example the metric MDS or the
Sammon mapping or its variations. In this paper the metric MDS is preferred.
However, distance-preservation methods fully works only for linear manifolds.
To avoid this disadvantage we suggest to compute the dissimilarity of the data
based on a graph distances instead of computing a distance as the Euclidean
distance. To compute the graph distances the set of the data is replaced by the
graph resulted of the TRN algorithm. The edges of the graph are labeled with
their Euclidean length and Dijkstra’s algorithm [6] is run on the graph, in order
to compute the shortest path for each pair of points.

The classical MDS algorithm is an algebraic method that rests on the fact that
the matrix Y containing the output coordinates can be derived by eigenvalue
decomposition from the scalar product matrix B = YYT . The detailed metric
MDS algorithm is the following:

The MDS Algorithm [24]

1. Let the searched coordinates of n points in a d-dimensional Euclidean space
be given by yi (i = 1, . . . , n), where yi = (yi,1, . . . , yi,d)

T . Matrix Y =
[y1, . . . ,yn]T is the n×d coordinates matrix. The Euclidean distances {d∗i,j =
(yi − yj)

T (yi − yj)} are known. The inner product of matrix Y is denoted
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B = YYT . Find matrix B from the known distances {d∗i,j} using Young-
Householder process [33]:

(a) Define matrix A = [ai,j ], where ai,j = − 1
2d∗2i,j ,

(b) Deduce matrix B from B = HAH, where H = I − 1
n llT is the

centering matrix, and l is an n × 1 column vector of n ones

2. Recover the coordinates matrix Y from B using the spectral decomposition
of B:

(a) The inner product matrix B is expressed as B = YYT . The
rank of B is r (B) = r

(
YYT

)
= r (Y) = d. B is symmetric,

positive semi-definite and of rank d, and hence has d non-negative
eigenvalues and n − d zero eigenvalues.

(b) Matrix B is now written in terms of its spectral decomposition,
B = VΛVT , where Λ = diag (λ1, λ2, . . . , λn) the diagonal ma-
trix of eigenvalues λi of B, and V = [v1, . . . ,vn] the matrix of
corresponding eigenvectors, normalized such that vT

i vi = l,

(c) Because of the n − d zero eigenvalues, B can now be rewritten
as B = V1Λ1VT

1 , where Λ1 = diag (λ1, λ2, . . . , λd) and V1 =
[v1, . . . ,vd],

(d) Finally the coordinates matrix is given by Y = V1Λ
1
2
1 , where

Λ
1
2
1 = diag

(
λ

1
2
1 , . . . , λ

1
2
d

)
.

The proposed data analysis tool is an unsupervised mapping algorithm that
gives a compact representation of the data set as result. It results in a new visual-
ization map, called Topology Representing Network Map (TRNMap). TRNMap
is a self-organizing model with no predefined structure which provides an expres-
sive presentation of high-dimensional data in low-dimensional data space. The
dimensionality of input space is not restricted. Although we can get arbitrary
dimensional output map as a result, in this paper the 2-dimensional output map
is recommended. The method for constructing the TRNMap (TRNMap algo-
rithm) is based on the graph distances, therefore it is able to handle the set
of data lying on a low-dimensional manifold that is nonlinearly embedded in a
higher-dimensional input space.

Given a set of data X = {x1,x2, . . . ,xN}, xi ∈ R
D. The main goal of the

algorithm is to give a compact, perspicuous representation of the objects. For
this purpose the set of X is mapped into a lower-dimensionality output space,
Y = {y1,y2, . . . ,yn},n ≤ N , (yi ∈ R

d, d � D, in this paper d = 2).
To avoid the influence of the range of the attributes a normalization proce-

dure is suggested as a preparing step (Step 0). After the normalization the al-
gorithm creates the topology representing network of the input data set (Step 1).
Although, any kind of topology representing networks is adaptable in the proposed
algorithm, in this paper we suggest to use of the Topology Representing Network
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proposed by Martinetz and Shulten [20]. The number of the nodes (representa-
tives) of the TRN is determined by the user. By the use of the TRN, this step en-
sures the exploration of the correct structure of the data set, and includes a vector
quantization, as well. If the resulting graph is unconnected, the algorithm connects
the subgraphs by linking the closest elements (Step 2). Then the pairwise graph
distances are calculated between every pair of representatives (Step 3). In the fol-
lowing, the original topology representing network is mapped into a 2-dimensional
graph (Step 4). In this paper it is carried out by the metric multidimensional scal-
ing, where the similarities of the data points are provided by the previously cal-
culated graph distances. The use of graph distances during the mapping process
ensures that the algorithm is able to reveal low-dimensional manifolds embedded
in a high-dimensional vector space. For the expressive visualization component
planes are also created by the D-dimensional representatives (Step 5).

The Topology Representing Network Map Algorithm

0. Normalize the input data set X.
1. Create the topology representing network of X by the use of the TRN al-

gorithm. Yield M (D) = (W, C) the resulting graph, let wi ∈ W the repre-
sentatives (nodes) of M (D). If exists an edge between the representatives wi

and wj (wi,wj ∈ W , i �= j), ci,j = 1, otherwise ci,j = 0.
2. If M (D) is not connected, connect the subgraphs in the following way:

While there are unconnected subgraphs (m(D)
i ⊂ M (D), i = 1, 2, . . .):

(a) Choose a subgraph m
(D)
i .

(b) Let the terminal node t1 ∈ m
(D)
i and its closest neighbor t2 /∈

m
(D)
i from:

‖t1 − t2‖ = min‖wj − wk‖, t1,wj ∈ m
(D)
i , t2,wk /∈ m

(D)
i

(c) Set ct1,t2=1.

Yield M∗(D) the modified M (D).

3. Calculate the graph distances between all wi,wj ∈ M∗(D).
4. Map the graph M (D) into a 2-dimensional vector space by metric MDS based

on the graph distances of M∗(D).
5. Create component planes for the resulting Topology Representing Network

Map based on the values of wi ∈ M (D).

The parameters of the TRNMap algorithm are the same as those of the Topol-
ogy Representing Networks algorithm. The number of the nodes of the output
graph (n) is determined by the user. The bigger the n the more detailed the
output map will be. We suggest the choice n = 0.2N . If the number of the
input data elements is high, it can result in numerous nodes. In these cases it
is practical to decrease the number of the representatives and iteratively run
the algorithm to capture the structure more perspicuously. Values of the other
parameters of TRN (λ, the step size ε, and the threshold value of edge’s ages T )
can be the same as proposed by Martinetz & Schulten [20].
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Besides the visualization of the data structure, the nodes of TRNMap also
visualizes the high-dimensional information by the use use of the component
plane representation. A component plane displays the value of one component
of each node. If the input data set has D attributes, the Topology Representing
Network Map component plane includes D different maps according to the D
components. The structure of these maps is the same as the TRNMap map, but
the nodes are represented in greyscale. White color means the smallest value,
black color corresponds to the greatest value of the attribute. By viewing several
component maps at the same time it is also easy to see simple correlations
between attributes. Because nodes of TRNMap can be seen as possible cluster
prototypes, TRNMap can provide the basis for an effective clustering method.

4 Application Examples

Three examples are now used to demonstrate the applicability of the proposed
algorithm. The first example is based on the Swiss roll data set, widely used
in the related literature (e.g. [17,29]). The other two examples are based on
real clustering problems coming from the UCI Repository of Machine Learning
Databases (http://www.ics.uci.edu). The second example deals with the visual-
ization and clustering of the well-known wine data set. The third example shows
the result of the mapping process on the Wisconsin breast cancer database.

To compare TRNMap with its alternatives several combinations of vector
quantization, distance calculation, and mapping algorithms have been studied.
As vector quantization the well-known k-means and neural gas algorithms were
used. The distances were calculated based on either Euclidean norm (Eu) or
graph distance. Although the graph distance can be calculated based on the
graphs arising from the ε-neighboring, k-neighboring or the Topology Repre-
senting Network, only the two last methods (knn with k=3 and TRN) have
been applied, since the ε-neighboring method is very sensitive to the data den-
sity. As dimensionality reduction method the MDS and the Sammon mapping
have been applied. The Sammon mapping was applied without initialization
(Sammon) and with initialization based on the MDS (Sammon mds), where the
result of the MDS algorithm serves the initial projection of the data.

Three quantitative measures are used to evaluate the different mapping meth-
ods on comparable grounds. The firs measure evaluates the Sammon stress func-
tion (1). Since mappings often utilize MDS as dimensionality reduction method,
the second quantitative measure evaluates the MDS stress defined as follows:

1
N∑

i<j

d∗2i,j

N∑

i<j

(
d∗i,j − di,j

)2
, (8)

where d∗i,j denotes the distances between the data points or representatives to
be projected, and di,j respectively for the mapped objects. The third measure is
based on the residual variance defined as:

1 − R2(D∗
X ,DY ), (9)
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where DY denotes the matrix of Euclidean distances in the low-dimensional
output space (DY = [di,j ]), and D∗

X , D∗
X = [d∗i,j ] is the best estimation of

the distances of the data to be projected. R is the standard linear correlation
coefficient, taken over all entries of DY and D∗

X . When the examined methods
utilize a geodesic or a graph distances to calculate the pairwise dissimilarities
of the objects in the high-dimensional space the value of the dissimilarities of
these objects (d∗i,j) are also calculated based on this principle. The values of
di,j denote the Euclidean distances of the objects in the low-dimensional output
space in all cases.

4.1 The Swiss Roll Data Set

The Swiss roll data set (Fig. 2(a)) is a 3-dimensional data set with a 2-dimensional
nonlinear embedded manifold. In this example the Swiss roll data set contains
2000 data points. Linear mapping algorithms, such Principal Component Anal-
ysis do not come to the proper results (Fig. 2(b)), because of the 2-dimensional
nonlinear embedding. As can be seen in Fig. 2(c) the nonlinear CCA is also not
able to uncover the real structure of the data. Figure 2(d) shows that Isomap
finds the structure of the 2-dimensional embedded manifold. Figures 2(e) and (f)
show the result of the CDA algorithms (the number of the representatives is 200
and the neighboring graph was calculated based on the k-neighboring approach
with k=3). The results of the CDA algorithm were calculated with two different
vector quantization methods. Figure 2(e) shows the result of the CDA based on
the k-means VQ, and Fig. 2(f) shows the result obtained by the use of the neural
gas vector quantization. It can be seen that the CDA algorithm can not uncover
the structure in all cases.

In the following let us have a closer look at the result of the proposed Topol-
ogy Representing Network Map algorithm. For more compact representation
the number of the output nodes in this case was chosen to be n = 200. The
parameters of the TRN algorithm were tuned according to the rules presented
in [20]: λ(t) = λi(λf/λi)t/tmax and ε(t) = εi(εf/εi)t/tmax , where λi = 0.2n,
λf = 0.01, εi = 0.3, εf = 0.05 and tmax = 200n. Unlike to the suggested formula
(T (t) = Ti(Tf/Ti)t/tmax), the threshold of the maximum age of the edges was
always kept on Ti = Tf = 0.1n during the whole running time.

The Topology Representing Network of the Swiss roll data is shown in Fig.
3(a) (Step 2 - Step 4). Figure 3(b) shows the 2-dimensional TRNMap of the
Swiss roll data set. It can be seen that the Topology Representing Network Map
algorithm is able to uncover the embedded 2-dimensional manifold. Both TRN-
Map and Isomap algorithms are able to disclose the structure of the manifold,
but the TRNMap algorithm gives more compact representation. Moreover, when
the parameter k (or ε) is not properly selected, Isomap fails to uncover the real
structure of the data. If these parameters are too small the resulting graphs are
unconnected, so multidimensional scaling is not executable on the whole data
set. Contrary, when these parameters are too big, Isomap cannot uncover the
real data structure.
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(a) The 3-dimensional Swiss roll data
set
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(b) 2-dimensional PCA projection of
the Swiss roll data set
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(c) 2-dimensional CCA projection of
the Swiss roll data set
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(d) 2-dimensional Isomap projection of
the Swiss roll data set
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(e) 2-dimensional CDA projection of
the Swiss roll data set with k-means
VQ
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(f) 2-dimensional CDA projection of
the Swiss roll data set with NG VQ

Fig. 2. The Swiss roll data set and its PCA, CCA, CDA and Isomap projection
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(a) The TRN of the Swiss roll data set
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Fig. 3. The TRN and the TRNMap of the Swiss roll data set

Table 1. The values of the Sammon stress, MDS stress and residual variance of different
algorithms on the Swiss roll data set

Algorithm Sammon stress MDS stress residual variance
kmeans-Eu-MDS 0,05088 0,20743 0,22891
kmeans-Eu-Sammon 0,050837 0,2132 0,242
kmeans-Eu-Sammon mds 0,049968 0,20931 0,23268
kmeans-knn-MDS 0,0021229 0,00090904 0,0032618
kmeans-knn-Sammon 0,0077129 0,0044013 0,015745
kmeans-knn-Sammon mds 0,0019803 0,00097396 0,003475
NG-Eu-MDS 0,058255 0,049412 0,26781
NG-Eu-Sammon 0,057581 0,05104 0,27613
NG-Eu-Sammon mds 0,057163 0,050242 0,27169
NG-knn-MDS 0,0020823 0,00085883 0,003066
NG-knn-Sammon 0,0039808 0,0024227 0,009162
NG-knn-Sammon mds 0,0039215 0,0023683 0,0089164
TRNMap1 (TRN+MDS) 0,0014528 0,00062888 0,0022373
TRNMap2 (TRN+Sammon) 0,010487 0,0049348 0,015857
TRNMap3 (TRN+Sammon mds) 0,0013435 0,00067616 0,0023464

For the comparison the TRNMap was also calculated with all three mapping
possibilities. The errors of all projections can be seen in Table 1.

Table 1 shows that the mappings based on the Euclidean distance are not able
to uncover the structure of the data because of the nonlinear embedded manifold.
On the other hand, it can be seen that the initialization of the Sammon mapping
with the result of the MDS improves the mapping quality of the mapping. When
the distances are calculated based on a graph, the MDS results in better map-
ping quality than the Sammon mappings. The best mapping results are given by
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Fig. 4. Different mappings of the Swiss roll data set

the kmeans-knn-MDS, NG-knn-MDS and TRNMap1 algorithms (see Fig. 4 and
Fig. 3(b)). Comparing all methods it can be seen that the TRNMap1 outperform
all other methods.

From the methods presented in the Sect. 1.3 the method CDA is the most
closely related algorithm to the TRNMap based on the following three reasons:
(i) both methods utilizes vector quantization, (ii) both methods utilize graph
distances to compute the dissimilarities of the representatives and (iii) both
methods use metric dimensionality reduction methods. To compare the results
of these methods see Fig. 2(e), Fig. 2(f), Fig. 3(b) and Table 2. Based on the
previously made observation the CDA algorithm was initialized with the result of
the MDS algorithm. Both the graphical representations and the error measures
point out that TRNMap outperforms the CDA algorithm.

Table 2. The values of the Sammon stress, MDS stress and residual variance of the
CDA and the TRNMap algorithms on the Swiss roll data set

Algorithm Sammon stress MDS stress residual variance
kmeans-CDA 0,0028834 0,0020072 0,0049501
NG-CDA 0,079221 0,05667 0,20326
TRNMap1 (TRN+MDS) 0,0014528 0,00062888 0,0022373

The visualization of the Topology Representing Network Map also includes
the construction of the component planes (Step 5). The Topology Representing
Network Map ordered component planes are shown in Fig. 5. The largest value of
the attributes of the representatives corresponds to the black and the smallest
value to the white dots surrounded by a grey circle. Figure 5(a) shows that
alongside the manifold the value of the first attribute (first dimension) initially
grows a little, then it decreases to the smallest value, after that it grows to the
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highest value, and finally it decreases a little. The value of the second attribute is
invariable alongside the manifold, but across the manifold it changes uniformly.
The third component starts from a middle value and grows a little, then it falls
to the smallest value, and finally increases to the highest value. The degree of
the changes in all three cases is uniform.
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Fig. 5. Component planes of the Topology Representing Network Map of the Swiss
roll data set

4.2 Visualization of Real Data Sets

In this subsection two real problems are considered. In all two cases λ, ε and
tmax parameters were set to the values presented in Section 4.1. The tuning
of the parameter age of the edges is shown in the following. On the Topology
Representing Network Map and on its component maps the class labels are also
presented in all two cases. The representatives are labeled based on the principle
of the majority vote: (1) each data point is assigned to the closest representative;
(2) the representatives are labeled with the class label occurring in the highest
degree between its data elements.
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Table 3. The values of the Sammon stress, MDS stress and residual variance of the
CDA and the TRNMap algorithms on the wine data set

Algorithm Sammon stress MDS stress residual variance
kmeans-CDA 0,05035 0,029662 0,084369
NG-CDA 0,016299 0,0083896 0,031398
TRNMap (TRN+MDS) 0,0079656 0,0033589 0,011283
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(c) Tf = 0.05n

Fig. 6. Topology Representing Network Maps of the wine data set with 35 nodes and
with different values of Tf

The wine database consists of the chemical analysis of 178 wines from three
different cultivars in the same Italian region. Each wine is characterized by 13
continuous attributes, and there are three classes distinguished. The number of
the representatives was chosen to be n = 0.2N . It means 35 nodes in this case.
The data seems relatively diverse because the maps resulted by the multiple runs
are more different. The effect of the change of the parameter Tf is shown in Fig. 6
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(a) The kmeans-CDA representation of
the wine data set with MDS initializa-
tion
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(b) The NG-CDA representation of the
wine data set with MDS initialization

Fig. 7. Different representations of the wine data set based on the NG VQ
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Fig. 8. Complete Topology Representing Network Map representation of the wine data
set

(other parameters were chosen the same as in the previous example). It can be
seen that the deletion of edges produces smoother graphs.

For the comparison the CDA algorithm has been also applied on this data set.
The best result of the CDA algorithm applying the k-neighboring approach was
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Fig. 9. Different visualizations of the Wisconsin breast cancer data set

given with k = 3 (Fig. 7(a) and Fig. 7(b)). The class labels in these figures are
the same as in Fig. 6. The CDA mapping was initialized with the result of the
MDS algorithm, and the error measures for the TRNMap were calculated for
the parameter setting Tf = 0.15n. Table 3 shows the numerical evaluation of the
algorithms. It can be seen that the TRNMap indicate the best mapping quality.
The component planes of TRNMap with Tf = 0.15n are shown in Fig. 8.

The Wisconsin breast cancer data base is a well known diagnostic data
set for breast cancer compiled by Dr William H. Wolberg, University of Wis-
consin Hospitals [18]. This data set contains 9 attributes and the class labels for
the 683 instances (16 records with missing values were deleted) of which 444 are
benign and 239 are malignant. The number of the nodes in this case was reduced
to n = 70. The results of the several runs seem to have drawn a fairly wide par-
tition and a compact partition. The resulting Topology Representing Network
Maps with 70 nodes are shown in Fig. 9(a). For the comparison we have also
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Table 4. The values of the Sammon stress, MDS stress and residual variance of the
different mapping algorithms on the Wisconsin breast cancer data set

Algorithm Sammon stress MDS stress residual variance
kmeans-knn-MDS 0,027987 0,019241 0,074187
NG-knn-MDS 0,017252 0,010299 0,039967
TRNMap (TRN+MDS) 0,011065 0,0059399 0,021162
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Fig. 10. Complete Topology Representing Network Map representation of the Wiscon-
sin breast cancer data set

run the kmeans-knn-MDS (Fig. 9(b)) and the NG-knn-MDS (Fig. 9(c)) algo-
rithms on this data set. The number of the representatives in these cases was
also chosen to n = 70 and the neighborhood graph was established based on the
k-neighboring approach with parameter setting k = 3. In these figures the repre-
sentatives of the benign class are labeled with circle markers and the malignant
class is yielded with triangle markers. Table 4 shows the numerical evaluation of
the mappings. The efficiency of the proposed TRNMap algorithm in this case is
also confirmed by the error values. The complete TRNMap visualization of the
Wisconsin breast cancer data set is shown in Fig. 10.

5 Conclusion

This paper introduced a new tool for the visualization of the hidden structure of
high-dimensional data sets. It has been shown (1) if low-dimensional manifolds
exist in the high-dimensional feature space of the data set algorithms based on
geodesic (graph) distance should be preferred over classical Eucledian distance
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based methods. (2) Among the wide range of possible approaches graphs ob-
tained by Topology Representing Networks are the best suitable to approximate
this low-dimensional manifold. (3) Multidimensional Scaling (MDS) is an effec-
tive method to form a low-dimensional map of the TRN based on the calculated
graph distances. (4) Sammon projection is sensitive to the initial map of the
graph, so it should be used only to fine tune the mapping obtained by MDS.

The resulted Topology Representing Network Map can be seen as an im-
provement of Isomap in the following viewpoints: (5) TRNMap is able to map
such data sets also that are located far away from each other (multi-class prob-
lems); (6) by the applied vector quantization method the computational cost of
the mapping is significantly reduced; (7) the resulting representatives provide
excellent facilities for further data exploratory analysis, such as clustering or
classification; (8) TRNMap is less sensitive noise and outliers in the data. Com-
paring the TRNMap and the CDA algorithms, it can be seen that TRNMap
utilizes more efficient calculation of the graph distances than CDA.

Synthetic and real life examples have showed that Topology Representing
Network Map utilizes advantages of several dimensionality reduction methods
so that it is able to give a compact representation of low-dimensional manifolds
nonlinearly embedded in the high-dimensional feature spaces.
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Abstract. Fractal interpolation provides an efficient way to describe
data that have an irregular or self-similar structure. Fractal interpola-
tion literature focuses mainly on functions, i.e. on data points linearly
ordered with respect to their abscissa. In practice, however, it is often
useful to model curves as well as functions using fractal intepolation tech-
niques. After reviewing existing methods for curve fitting using fractal
interpolation, we introduce a new method that provides a more econom-
ical representation of curves than the existing ones. Comparative results
show that the proposed method provides smaller errors or better com-
pression ratios.

Keywords: fractal interpolation, curve fitting, iterated function systems.

1 Introduction

Fractal interpolation has been developed as an alternative interpolation tech-
nique suitable for capturing data with inherent fractal structure, i.e. details at
different scales or some degree of self-similarity. In contrast to traditional in-
terpolation, which is built on elementary functions such as polynomials, fractal
interpolation is based on the theory of iterated function systems producing in-
terpolants that are convenient for fitting physical or experimental data.

Fractal interpolation literature focuses on functions, i.e. the data points are
linearly ordered with respect to their abscissa and the interpolant is a function of
(usually) non-integral dimension. This is often sufficient, e.g. when interpolating
time series data. In practice, however, there are many cases where the data are
suitable for fractal interpolation but define a curve rather than a function, e.g.
when modelling coastlines or plants. So, it is useful to extend fractal interpolation
to include curves as well as functions, an issue not fully addressed so far. Methods
based on generalizations to higher dimensions are introduced in [1], [2] and [3].
The use of index coordinates is suggested in [4]. Non-affine fractal interpolation
is employed in [5]. Various combinations of IFS models and free form curves are
proposed in [6] and [7]. A method of data fitting by means of fractal interpolation
functions is proposed in [8]. An interpolation method for multifractal structures
is presented in [9].

In this paper we review existing approaches in this area and introduce a new
method for curve fitting by fractal interpolation. Our motivation is to create
a method that is more accurate and economical than the existing ones, thus

M.L. Gavrilova and C.J.K. Tan (Eds.): Trans. on Comput. Sci. I, LNCS 4750, pp. 85–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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being more suitable for practical applications such as shape representation. All
methods are compared in practical applications showing the advantages of the
proposed FCF method in terms of either accuracy or compression ratio. The
paper is structured as follows. In Sect. 2 we present the necessary background
on fractal interpolation functions. Section 3 contains existing appoaches to curve
fitting by fractal interpolation, while Sect. 4 introduces the new method. Section
5 contains the application of our method in various practical cases and compar-
isons against previous approaches. Finally, Sect. 6 presents our conclusions and
indicates areas of future work.

2 Fractal Interpolation Functions

Fractal interpolation functions as defined in [10] and [11] are based on the the-
ory of iterated function systems. An iterated function system (IFS), denoted
by {X ; wn, n = 1, 2, . . . , N}, consists of a complete metric space (X, ρ), e.g.
(IRn, || · ||) or a subset, and a finite set of continuous mappings wn: X → X ,
n = 1, 2, . . . , N . If wn are contractions with respective contractivity factors sn,
n = 1, 2, . . . , N , the IFS is termed hyperbolic. The transformation W : H(X) →
H(X) with W (B) = ∪N

n=1wn(B), where H(X) denotes the metric space of
nonempty compact subsets of X with respect to the Hausdorff metric, has a
unique fixed point A∞ = W (A∞) = limn→∞ Wn(B) for every B ∈ H(X),
which is called the attractor of the IFS.

BddA )B A)( (

AB

Fig. 1. The difference between dA(B) and dB(A)

The Hausdorff distance between the points A and B of H(X) is given by

h(A, B) = max{dA(B), dB(A)},

where dB(A) = max{d(x, B) : x ∈ A} and dA(B) = max{d(x, A) : x ∈ B}
(Fig. 1). The function dA(B) sometimes is called the directed Hausdorff distance
from A to B. Because of the sensitivity of the Hausdorff metric to noise or iso-
lated points that stems from its ‘worst-case’ nature, some Hausdorff-like metrics
have been proposed such as the Modified Hausdorff Distance (MHD) (see [12]).
Specifically,
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hMHD(A, B) = max{dMHD(A, B), dMHD(B, A)}
where dMHD(A, B) = (1/Na)Σa∈Ad(a, B), Na denotes the number of points in
A and d(a, B) is the usual point to set distance.

2.1 Fractal Interpolation Functions in the Plane

Let us represent the given set of data points as {(um, vm)∈ IR2: m= 0, 1, . . . , M}.
In general, the interpolation is applied to a subset of them, the interpolation
points, represented as {(xi, yi) ∈ IR2: i = 0, 1, . . . , N}. Both sets are linearly
ordered with respect to their abscissa, i.e. u0 < u1 < · · · < uM and u0 =
x0 < x1 < · · · < xN = uM . The interpolation points partition the set of data
points into interpolation intervals and may be chosen equidistantly or not. The
greater the number of interpolation points the better the fit of the data, but more
interpolation points result in a smaller compression ratio since more information
is required to describe the interpolation function.

Let {IR2; wn, n = 1, 2, . . . , N} be an IFS with affine transformations

wn

[
x
y

]
=

[
an 0
cn sn

] [
x
y

]
+

[
dn

en

]

constrained to satisfy

wn

[
x0
y0

]
=

[
xn−1
yn−1

]
and wn

[
xN

yN

]
=

[
xn

yn

]

for every n = 1, 2, . . . , N . Solving the above equations results in

an =
xn − xn−1

xN − x0

dn =
xNxn−1 − x0xn

xN − x0

cn =
yn − yn−1

xN − x0
− sn

yN − y0

xN − x0

en =
xNyn−1 − x0yn

xN − x0
− sn

xNy0 − x0yN

xN − x0
,

i.e. the real numbers an, dn, cn, en are completely determined by the interpolation
points, while the sn are free parameters of the transformations satisfying |sn| <
1, in order to guarantee that the IFS is hyperbolic with respect to an appropriate
metric. The transformations wn are shear transformations : line segments parallel
to the y-axis are mapped to line segments parallel to the y-axis contracted by the
factor |sn|. For this reason, the sn are called vertical scaling (or contractivity)
factors.

It is well known (see for example [11]) that the attractor G =
⋃N

n=1 wn(G) of
the aforementioned IFS is the graph of a continuous function f : [x0, xN ] → IR
that passes through the interpolation points. This function is called fractal inter-
polation function (FIF) corresponding to these points. It is a self-affine function
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since each affine transformation wn maps the entire (graph of the) function to
its section, i.e. function values between the interpolation points (xn−1, yn−1) and
(xn, yn) for all n=1, 2, . . . , N . For example, let {(0, 0), (0.4, 0.5), (0.7, 0.2), (1, 0)}
be a given set of data points. Figure 2 shows the graph of an affine FIF with
s1 = 0.5, s2 = −0.2 and s3 = 0.4.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 2. The construction of an affine FIF starting from the unit square

The graph of a FIF is bounded by the rectangle [x0, xN ] × [a, b] if the vertical
scaling factors sn satisfy smin

n ≤ sn ≤ smax
n and |sn| < 1, where

smin
n = max

{
a − yn−1

b − y0
,
a − yn

b − yN
,
b − yn−1

a − y0
,

b − yn

a − yN

}

smax
n = min

{
b − yn

b − yN
,
b − yn−1

b − y0
,

a − yn

a − yN
,
a − yn−1

a − y0

}

for every n = 1, . . . , N (see [5], [13]).
Although the FIF passes by definition through the interpolation points, this

is not necessarily the case for the remaining data points {(um, vm)} \ {(xi, yi)}.
The accuracy of fit can be measured as the squared error between the ordinates
of the original and the reconstructed points

ε =
M∑

m=0

(vm − G(um))2 (1)

or, alternatively, as the Hausdorff distance between the two sets

ε = h({(um, vm)}, G).
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The vertical scaling factors of a FIF are usually chosen so as to minimize such an
error measure. For example, in [14] and [15] the minimization of (1) is achieved
by algebraic or geometric methods. Moreover in [15], a greedy algorithm for
finding some proper (but not necessarilly globally optimal) interpolation points
is presented.

An extension of the FIFs are the so-called piecewise self-affine FIFs (see
[15]), which are essentially an application of the recurrent IFSs (see [11]). Their
motivation is the fact that data often present self-affinity in subintervals and not
in their whole length. This is modelled by the introduction of the address points,
represented as {(x̃n,1, ỹn,1), (x̃n,2, ỹn,2) ∈ IR2: n = 1, 2, . . . , N}, that define the
intervals of self-affinity. The affine transformations wn, n = 1, 2, . . . , N are then
constrained to satisfy

wn

[
x̃n,1
ỹn,1

]
=

[
xn−1
yn−1

]
and wn

[
x̃n,2
ỹn,2

]
=

[
xn

yn

]
.

Piecewise self-affine FIFs are more flexible than affine FIFs, but require the ad-
ditional cost of determining the address points. Moreover, a greedy algorithm for
locating both some proper (but not necessarilly globally optimal) interpolation
and address points is presented in [15].

2.2 Generalized Fractal Interpolation Functions

The FIF model described in the previous section can be extended to higher
dimensions, producing functions that interpolate points in IRk. Let {pm ∈ IRk:
m = 0, 1, . . . , M} be the set of data points and {qi ∈ IRk: i = 0, 1, . . . , N} the set
of interpolation points. Both sets are again assumed to be linearly ordered with
respect to their abscissa. Let {IRk; wn, n = 1, 2, . . . , N} be an IFS with affine
transformations

wn

⎡

⎢⎢⎢⎣

q1

q2

...
qk

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

an 0 · · · 0
c1
n s1,1

n · · · s1,k−1
n

...
...

. . .
...

ck−1
n sk−1,1

n · · · sk−1,k−1
n

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
k×k

⎡

⎢⎢⎢⎣

q1

q2

...
qk

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
k×1

+

⎡

⎢⎢⎢⎣

d1
n

d2
n
...

dk
n

⎤

⎥⎥⎥⎦

constrained to satisfy

wn(q0) = qn−1 and wn(qN ) = qn

for every n = 1, 2, . . . , N . The real numbers an, ci
n, dj

n for every n = 1, . . . , N , i =
1, 2, . . . , k −1 and j = 1, 2, . . . , k are completely determined by the interpolation
points by solving the above equations, while the si,j

n , i, j = 1, 2, . . . , k − 1 are
free parameters of the transformations chosen such that the contractivity factor
sn of the matrix (called contractivity matrix )

⎡

⎢⎣
s1,1

n · · · s1,k−1
n

...
. . .

...
sk−1,1

n · · · sk−1,k−1
n

⎤

⎥⎦
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has modulus less than unity, in order to guarantee that the IFS is hyperbolic
with respect to an appropriate metric. The exact values of si,j

n can be determined
by minimizing an error measure as in the planar case (see e.g. [2]) .

The attractor G =
⋃N

n=1 wn(G) of the IFS is the graph of a continuous func-
tion f : [q1

0 , q
1
N ] → IRk−1 that interpolates the points qi, i = 0, 1, . . . , N (see [11]).

It is a self-affine FIF in IRk; however, its orthogonal projections to IR2 are not
necessarilly self-affine. The accuracy of fit of a Generalized FIF can be defined
similarly to the planar case.

For example, in IR3 we have the IFS {IR3; wn, n = 1, 2, . . . , N} with affine
transformations

wn

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
an 0 0
c1
n s1,1

n s1,2
n

c2
n s2,1

n s2,2
n

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ +

⎡

⎣
d1

n

d2
n

d3
n

⎤

⎦

constrained to satisfy

wn

⎡

⎣
x0
y0
z0

⎤

⎦ =

⎡

⎣
xn−1
yn−1
zn−1

⎤

⎦ and wn

⎡

⎣
xN

yN

zN

⎤

⎦ =

⎡

⎣
xn

yn

zn

⎤

⎦

for n = 1, 2, . . . , N . Solving the above equations results in

an =
xn − xn−1

xN − x0

d1
n =

xNxn−1 − x0xn

xN − x0

c1
n =

yn − yn−1

xN − x0
− s1,1

n

yN − y0

xN − x0
− s1,2

n

zN − z0

xN − x0

c2
n =

zn − zn−1

xN − x0
− s2,1

n

zN − z0

xN − x0
− s2,2

n

zN − z0

xN − x0

d2
n =

xNyn−1 − x0yn

xN − x0
− s1,1

n

xNy0 − x0yN

xN − x0
− s1,2

n

xNz0 − x0zN

xN − x0

d3
n =

xNzn−1 − x0zn

xN − x0
− s2,1

n

xNy0 − x0yN

xN − x0
− s2,2

n

xNz0 − x0zN

xN − x0

i.e. the real numbers an, d1
n, c1

n, c2
n, d2

n, d3
n are completely determined by the in-

terpolation points, while s1,1
n , s1,2

n , s2,1
n , s2,2

n are free parameters of the transfor-
mations chosen such that the contractivity factor of the matrix

[
s1,1

n s1,2
n

s2,1
n s2,2

n

]

has modulus less than unity.
For example, let {(0, 2, 1), (1, 4, 3), (2, 8, 5), (3, 6, 2), (4, 5, 6), (5, 2, 4), (6, 3, 7),

(7, 4, 4), (8, 2, 3), (9, 1, 2)} be a given set of data points in IR3. Figure 3 shows
the graph of a Generalized FIF with s1,1

n = s1,2
n = s2,1

n = s2,2
n = 0.1. The
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Fig. 3. A Generalized FIF in IR3. The projections of the Generalized FIF on the xy,
xz and yz planes are depicted in gray.

concept of piecewise self-affine FIFs in IR2 can be similarly extended to higher
dimensions.

Hidden Variable Fractal Interpolation Functions. The Generalized FIFs
can also be used for interpolating points in IR2. The idea is to extend the data to
a higher-dimensional space, interpolate them by a Generalized FIF and project it
back to IR2 to obtain a function that interpolates the original data. Specifically,
we apply to the interpolation points the mapping T : IR2 → IR3 with (xi, yi) �→
(xi, yi, Hi), i = 0, 1, . . . , N , where the Hi are freely chosen. The new set of
points (xi, yi, Hi), i = 0, 1, . . . , N is the generalized set of data corresponding to
the original points and is interpolated by creating an IFS in IR3 as described in
the previous section. The attractor G′ =

⋃N
n=1 wn(G′) of the IFS is the graph of

a continuous function f ′: [x0, xN ] → IR2 that interpolates the points (xi, yi, Hi),
i = 0, 1, . . . , N . The orthogonal projection of the attractor to IR2, defined by
PH : G′ → G with (x, y, H) �→ (x, y), is the graph of a continuous function
f : [x0, xN ] → IR that interpolates the points (xi, yi), i = 0, 1, . . . , N . The extra
coordinate Hi is called hidden variable and can be used to adjust the shape of
the resulting interpolation function f which is thus called hidden variable fractal
interpolation function (HVFIF). Note that although the attactor G′ is self-affine,
this is not necessarily the case for its projection G.

The hidden variable FIFs can be extended by introducing more than one
hidden variables, having thus more free parameters in order to adust the shape
of the resulting interpolation function.
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3 Existing Applications of FIFs to Curve Fitting in the
Plane

When the interpolation points define a curve rather than a function, i.e. they
are not linearly ordered with respect to their abscissa, the direct use of a frac-
tal interpolation function is not possible. In order to construct an IFS whose
attractor interpolates the given points, and is therefore a curve, we can trans-
form or extend the original points such that the application of a FIF is possible.
This is then transformed or projected back to the plane to obtain a curve that
interpolates the original points.

3.1 Curves as Projections of Generalized FIFs

One possibility is to extend the idea of hidden-variable FIFs ([1], [2], [3]). We
transform the original set of points to a higher-dimensional set that defines a
function, then create the respective FIF and project it back to IR2 to obtain a
curve that interpolates the original points.

Let {(xi, yi) ∈ IR2: i = 0, 1, . . . , N} be the set of interpolation points. These
points do not define a function but a curve on the xy-plane, i.e. it is not nec-
essarily xi < xj for i < j. We apply the transformation T : IR2 → IR3 with
(xi, yi) �→ (ti, xi, yi), i = 0, 1, . . . , N , where the introduced index coordinates
ti satisfy t0 < t1 < · · · < tN ; usually we set ti = i. The new set of points
(ti, xi, yi), i = 0, 1, . . . , N is the generalized set corresponding to the original
points and defines a function. We create a FIF that interpolates the generalized
set as described in Sect. 2.2. The attractor G′ =

⋃N
n=1 wn(G′) of the IFS is the

graph of a continuous function f ′: [t0, tN ] → IR2 that interpolates the generalized
set of points (ti, xi, yi), i = 0, 1, . . . , N . The projection of the attractor to IR2,
defined by Pt: G′ → G with (ti, xi, yi) �→ (xi, yi), is the graph of a continuous
curve f : [x0, xN ] → IR that interpolates the points (xi, yi), i = 0, 1, . . . , N and is
thus called fractal interpolation curve (FIC) [1]. Note that although the attactor
G′ is self-affine, its projection G is not necessarily self-affine.

The FIC defined above is open, assuming that the first and last interpolation
points are different. In order to construct a closed fractal interpolation curve, we
append to the original points an additional one that is the same as the first, i.e.
we add (xN+1, yN+1) = (x0, y0). The curve is afterwards constructed in the same
way. A FIC of this kind is depicted in Fig. 4(a), which is constructed on a sim-
ple, manually selected set of 10 interpolation points. Specifically, the data points
{(3, 1), (2, 2), (1, 4), (0, 3), (−1, 3), (−2, 1), (−1, −1), (0, −2), (2, −1), (3.5, −0.5)}
have been used and the contractivity factors sn have been set to 0.1.

3.2 Curves by Coordinate Separation

A similar way to construct a FIC involves the introduction of index coordinates
without generalization to a higher-dimensional space ([4]). Specifically, we split
the original set of points into two new sets by introducing an index for each coor-
dinate. Then a fractal interpolation function is constructed for each new set, and
these are finally combined in a single curve that interpolates the original points.
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(a) (b) (c)

Fig. 4. (a) A FIC constructed by projecting a Generalized FIF. (b) A FIC constructed
by coordinate separation. (c) A polar FIF. All three interpolation curves have been
constructed from the same ten interpolation points (depicted in grey) using predefined
vertical scaling factors.

As previously, let {(xi, yi) ∈ IR2: i = 0, 1, . . . , N} be the set of interpolation
points. We apply the transformations T1: IR2 → IR2 with (xi, yi) �→ (ti, xi),
i = 0, 1, . . . , N and T2: IR2 → IR2 with (xi, yi) �→ (ti, yi), i = 0, 1, . . . , N , where
the introduced index coordinates ti satisfy t0 < t1 < · · · < tN ; usually we set
ti = i.

Then, we create a fractal interpolation function for each of the two sets in the
way described in Sect. 2.1. Let Gx = (txi , xi) and Gy = (tyi , yi) be the attractors
of the respective IFS. We can merge Gx and Gy in order to obtain G = (xi, yi)
which is the graph of a continuous curve f : [x0, xN ] → IR that interpolates
the points (xi, yi), i = 0, 1, . . . , N and is thus called fractal interpolation curve
(FIC). Note that although the attactors Gx and Gy are self-affine, this is not
necessarilly the case for G.

We can construct a closed curve, as previously, by appending to the original
points an additional one that is the same as the first. A FIC of this kind is
depicted in Fig. 4(b), where the same interpolation points and contractivity
factors as in Fig. 4(a) have been used.

3.3 Curves as Polar Fractal Interpolation Functions

If the data points that define the curve are ordered by angle in their polar form,
we can interpolate them using a class of non-affine FIFs, the polar FIFs (see
[5]). Specifically, let {(xi, yi) ∈ IR2 \ {(0, 0)}; i = 0, 1, . . . , N − 1} be the set of
interpolation points and (ri, θi) ∈ (0, ∞] × [0, 2π), i = 0, 1, . . . , N − 1 be their
representation in polar coordinates obtained by the transformations x = r cos θ
and y = r sin θ. We assume that at least one point (xi, yi) exists in each quadrant
and that it is 0 = θ0 < θ1 < · · · < θN−1 < θN = 2π, i.e. the points define a
function in the polar plane.

We create a FIF for the points (ri, θi), i = 0, 1, . . . , N , where (rN , θN ) =
(r0, θ0) and we transform it back to the xy−plane to obtain a closed curve
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that interpolates the points (xi, yi). This FIF is called polar fractal interpolation
function. Note that this curve is not self-affine since we have used a non-affine
(polar) transformation. A polar FIF is depicted in Fig. 4(c), where the same
interpolation points and contractivity factors as in Fig. 4(a) have been used.

4 Fractal Interpolation Curves in the Plane

We introduce a new method for creating fractal interpolation curves (FICs) in
the plane without using index coordinates or generalizing to a higher-dimensional
space. Our motivation is to create a more compact representation of curves using
fewer parameters, as will be analyzed in the next section. We apply a reversible
transformation to the data points in order to define a function in the plane. Then
a FIF is constructed as usual and its attractor is transformed back to the original
coordinates in order to obtain a curve that interpolates the original points.

Let us represent the given set of data points as {(um, vm) ∈ IR2 : m =
0, 1, . . . , M} and the set of interpolation points as {(uJ(i), vJ(i)) ∈ IR2 : i =
0, 1, . . . , N}, where the labelling function J: {0, 1, . . . , N} → {0, 1, . . . , M} defines
the indices of the interpolation points. We apply the transformation T1(um, vm)=
(u′

m, v′m), m=0, 1, . . . , M , where

u′
m = u0 +

m∑

j=1

(|uj − uj−1| + ε) = u′
m−1 + (|um − um−1| + ε)

v′m = vm,

and ε > 0 is an arbitrary constant necessary when all points in an interpolation
interval have equal u-coordinates, i.e. um = um−1 for every m = J(i)+1, . . . , J(i+
1) and some i ∈ {0, 1, . . . , N}. Otherwise, we set ε = 0. The resulting points
(u′

m, v′m), i = 0, 1, . . . , M are linearly ordered with respect to their abscissa,
i.e. u′

m < u′
n for every m < n. This transformation is essentially arraying the

data points so as to preserve their horizontal distances. This is shown in the
example depicted in Fig. 5, where the same interpolation points as in Fig. 4
have been used. Note that this transformation preserves the distances between
consecutive points, i.e. d((um, vm), (um−1, vm−1)) = d((u′

m, v′m), (u′
m−1, v

′
m−1))

for all m = 1, . . . , M .
The next step is to create an IFS whose attractor is the graph of a function

that interpolates the points (u′
J(i), v

′
J(i)), i = 0, 1, . . . , N . This is achieved by

using a 2D affine IFS (Sect. 2.1) and the result is its attractor G′.
The final step is to apply a second transformation to G′ in order to ob-

tain the graph G of a curve that interpolates the initial points {(um, vm):
m = 0, 1, . . . , M}. Let (u′, v′) ∈ G′ be a point of the attractor. We apply the
transformation T2: G′ → G with (u′, v′) �→ (u, v), where

u = um−1 + (um − um−1)
(

u′ − u′
m−1

u′
m − u′

m−1

)
, u′ ∈ [u′

m−1, u
′
m]

v = v′.
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Fig. 5. The interpolation points (black) and their transformation (grey) for the FIC
construction

Note that the overlapping at the endpoints of successive intervals [u′
i−1, u

′
i] in the

above formula is not ambiguous, since the resulting u is the same in both cases.
The transformation T2 can be efficiently computed, if the points of the attractor
are first sorted by u′ and then the attractor and transformed data points are
sweeped in parallel in order to calculate the appropriate (u, v).

The FIC defined above is open, assuming that the first and last points are
different. To construct a closed FIC, we append an additional interpolation point
that is the same as the first, i.e. we add (uJ(N+1), vJ(N+1)) = (uJ(0), vJ(0)). The
curve is afterwards constructed in the same way. A fractal interpolation curve
constructed by this method is depicted in Fig. 6, where the same interpolation
points and contractivity factors as in Fig. 4(a) have been used. We note that
the resulting curve is more similar to the one generated by the projection of
Generalized FIF methods.

We call the proposed method fractal curve fitting (FCF). The advantage of the
FCF method is that it offers a more compact representation using fewer param-
eters. As will be explained in the next section, for each interpolation interval it

Fig. 6. A fractal interpolation curve constructed by the proposed FCF method
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requires five parameters while the methods of Sect. 3.1 and 3.2 require ten. More-
over, it can be readily extended to represent curves in IR3. The third coordinate
has the same treatment as v, i.e. it remains unchanged by the transformations.

5 Results

In Fig. 7–9 the coastlines of the Greek islands Kimolos (A), Skyros (B) and
Lemnos (C) consisting of 3897, 4663 and 7185 points, respectively, are presented.
The coastlines have been extracted from digital aerial photographs of the islands
using typical edge detection techniques. These data sets define closed curves
and are suitable for fractal interpolation. A traditional interpolation method,
using e.g. polynomials, would require very dense interpolation points in order to
capture all the fine details of the coastlines.

Fig. 7. A data set consisting of 3897 points and representing coastline A (Kimolos)

Tables 1–3 show the Hausdorff distance h and the Modified Hausdorff distance
hMHD between the original and reconstructed data for the three aforementioned
coastlines, along with the total number of required transformation parameters
p. We compare the projection of Generalized FIF method (Sec. 3.1), the coordi-
nate separation method (Sec. 3.2) and the proposed FCF method (Sec. 4)1. The
contractivity matrix for the projection of generalized FIF method is calculated
with the algorithm of [3], while the vertical scaling factors for the other two
methods are calculated with the analytic algorithm of [15]. The two algorithms
are similar2, both minimizing the sum of squared distances between original
and reconstructed point coordinates using derivatives. Thus the results reflect
1 We have not compared the polar FIFs since the data are not ordered by angle in

their polar form.
2 The first is essentially an extention of the second.
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Fig. 8. A data set consisting of 4663 points and representing coastline B (Skyros)

Fig. 9. A data set consisting of 7185 points and representing coastline C (Lemnos)

the differences between the curve construction methods and not between the
algorithms for calculating the scaling factors. The interpolation intervals have
been chosen with a fixed increment L of 10 to 100, i.e. by taking every 10th to
100th point as interpolation point. As expected for all methods, the smaller the
interpolation intervals/compression ratio, the smaller the distance between the
original and reconstructed data. We also notice that in a few cases the increase
in the length of the interpolation interval decreases the Hausdorff distance. This
is rational, since the Hausdorff distance is sensitive to isolated, poorly approxi-
mated points. In these cases, the Modified Hausdorff distance provides a better
overall comparison.

In terms of Hausdorff and Modified Hausdorff distances, the proposed FCF
method significantly outperforms the coordinate separation method in almost
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Table 1. The Hausdorff and Modified Hausdorff distance between original/
reconstructed data and the number of required parameters for various interpolation
interval lengths (coastline A)

L
Method

Proj. of Gen. FIF Coord. separation Proposed FCF
h hMHD p h hMHD p h hMHD p

10 1.559 0.365 3890 2.974 0.519 3890 1.731 0.347 1945
20 2.651 0.486 1940 5.220 1.000 1940 3.157 0.506 970
30 2.976 0.683 1290 8.517 1.552 1290 5.047 0.704 645
40 4.503 0.874 970 11.493 1.939 970 5.545 0.855 485
50 4.987 1.107 770 13.865 2.449 770 6.262 1.113 385
60 10.161 1.330 640 13.930 2.982 640 9.234 1.278 320
70 10.430 1.592 550 16.396 3.378 550 9.225 1.524 275
80 9.967 1.829 480 19.057 3.644 480 14.469 1.766 240
90 10.162 2.085 430 17.758 3.828 430 11.369 1.811 215
100 14.481 2.238 380 18.363 3.928 380 15.559 2.135 190

Table 2. The Hausdorff and Modified Hausdorff distance between original/
reconstructed data and the number of required parameters for various interpolation
interval lengths (coastline B)

L
Method

Proj. of Gen. FIF Coord. separation Proposed FCF
h hMHD p h hMHD p h hMHD p

10 1.712 0.370 4660 2.105 0.443 4660 1.861 0.339 2330
20 2.202 0.498 2330 4.017 0.755 2330 3.374 0.484 1165
30 3.017 0.664 1550 5.759 1.105 1550 4.364 0.680 775
40 3.788 0.858 1160 6.433 1.362 1160 5.274 0.849 580
50 4.926 1.033 930 9.327 1.701 930 6.211 1.049 465
60 7.596 1.263 770 10.846 1.939 770 7.885 1.278 385
70 7.946 1.460 660 11.908 2.404 660 8.650 1.501 330
80 7.721 1.624 580 11.411 2.356 580 10.538 1.520 290
90 11.632 1.875 510 15.132 3.099 510 12.063 1.907 255
100 11.571 2.007 460 13.173 3.245 460 13.874 2.126 230

all cases and performs equally well to the projection of generalized FIF method.
Moreover, the proposed method uses five parameters for each pair of consecu-
tive interpolation points (one affine transformation of five parameters (Eq. 2.1)),
while the other two methods require ten parameters. Specifically, the projection
of generalized FIF method uses one affine transformation of ten parameters (Eq.
2.2), while the coordinate separation method uses two affine transformations of
five parameters each (Eq. 2.1). This implies that for a specific compression ratio
we can use the proposed FCF method with twice the number of interpolation
points than the other two and thus obtain better results. Comparing the previ-
ous results from this point of view it is evident that, for a specific compression
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Table 3. The Hausdorff and Modified Hausdorff distance between original/
reconstructed data and the number of required parameters for various interpolation
interval lengths (coastline C)

L
Method

Proj. of Gen. FIF Coord. separation Proposed FCF
h hMHD p h hMHD p h hMHD p

10 2.403 0.372 7180 2.836 0.476 7180 2.397 0.353 3590
20 2.666 0.481 3590 5.375 0.742 3590 2.859 0.482 1795
30 3.433 0.627 2390 7.182 1.096 2390 4.564 0.645 1195
40 4.187 0.776 1790 10.063 1.451 1790 6.246 0.844 895
50 5.300 0.966 1430 11.532 1.812 1430 6.648 1.012 715
60 6.342 1.132 1190 13.486 2.326 1190 7.695 1.163 595
70 7.588 1.285 1020 16.582 2.640 1020 9.971 1.451 510
80 8.608 1.482 890 20.037 3.006 890 10.110 1.544 445
90 9.560 1.584 790 21.066 3.462 790 10.813 1.617 395
100 9.845 1.830 710 24.233 3.973 710 12.081 1.865 355

ratio, the proposed method clearly outperforms both others achieving smaller
error or, conversely, for a specific error level it achieves better compression ratio.
Moreover, it has the advantage that for each pair of consecutive interpolation
points only one free parameter (vertical scaling factor) has to be determined,
while two and four such parameters are required for the coordinate separation
and projection of generalized FIF methods respectively. This is useful, for ex-
ample, when using these free parameters to describe a family of curves, thus
offering a more compact representation.

Fig. 10. The data points (black), interpolation points (grey circles) and FIC (grey) for
coastline A using the proposed FCF method with interpolation intervals of length 10
(r = 1: 4.01)
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Fig. 11. The data points (black), interpolation points (grey circles) and FIC (grey) for
coastline A using the proposed FCF method with interpolation intervals of length 30
(r = 1: 12.08)

Fig. 12. The data points (black), interpolation points (grey circles) and FIC (grey) for
coastline A using the proposed FCF method with interpolation intervals of length 50
(r = 1: 20.24)

In Fig. 10–12 parts of the reconstructed FICs for coastline A using the pro-
posed FCF method with interpolation intervals of length 10, 30 and 50 respec-
tively are presented. As shown in the figures, the reconstructed FICs provide an
accurate representation of the coastline even with sparse interpolation points,
and therefore high compression ratios are achieved. Specifically, the compression
ratios for these examples are 1: 4.01, 1: 12.08 and 1: 20.24 respectively3.

3 The compression ratio is calculated as r = 5N/(2M), where N is the number of affine
transformations and M is the number of data points. Note that the denominator is
multiplied by 2 since the data points have two coordinates.
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(a) (b) 

Fig. 13. (a) Coastline D (Amorgos) consisting of 4410 points. (b) The reconstructed
curve using FCF method with r = 1: 5.01.

(a) (b) 

Fig. 14. (a) Coastline E (Astypalaia) consisting of 7510 points. (b) The reconstructed
curve using FCF method with r = 1: 6.68.

In the left part of Fig. 13–15 three more coastlines are presented (Amorgos
(D), Astypalaia (E), Tilos (F)), consisting of 4410, 7510 and 6172 points, re-
spectively. In the right part of the figures, the reconstructed curves using FCF
method are presented, achieving compression ratios of 1: 5.01, 1: 6.68 and 1: 8.02,
respectively. As shown in the figures, the reconstructed FICs accurately represent
the coastlines, while requiring considerably less data.

In the previous examples we have used interpolation intervals of fixed length.
It is possible to define intervals of variable length, e.g. using the iterative al-
gorithm of [15]. In this case, we could achieve even better results by exploiting
more efficiently the possible self-affinity of the data.
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(a) (b) 

Fig. 15. (a) Coastline F (Tilos) consisting of 6172 points. (b) The reconstructed curve
using FCF method with r = 1: 8.02.

6 Conclusions

An accurate and economical new method for curve fitting using fractal interpo-
lation has been introduced. Results show that, for a specific compression ratio,
the proposed method clearly outperforms existing ones. Moreover, it has the
advantage of offering a more economical representation using fewer bound and
free parameters. Further work will focus on using piecewise self-affine FIFs ([15])
for interpolating the transformed data of the proposed method. This approach
is expected to be better for curves that present self-affinity in subintervals and
not at their whole length. Moreover, it will be useful to define bounds for the
contractivity factors such that the resulting curve is not self-intersecting.
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Abstract. This paper presents the development and design of a graphical user 
interface and a command line programming Toolbox for construction, edition 
and simulation of Interval Type-2 Fuzzy Inference Systems. The Interval Type-
2 Fuzzy Logic System (IT2FLS) Toolbox, is an environment for interval type-2 
fuzzy logic inference system development. Tools that cover the different phases 
of the fuzzy system design process, from the initial description phase, to the 
final implementation phase, constitute the Toolbox. The Toolbox’s best 
qualities are the capacity to develop complex systems and the flexibility that 
allows the user to extend the availability of functions for working with the use 
of type-2 fuzzy operators, linguistic variables, interval type-2 membership 
functions, defuzzification methods and the evaluation of Interval Type-2 Fuzzy 
Inference Systems. 

Keywords: Interval Type-2 Fuzzy Inference Systems, Interval Type-2 Fuzzy 
Logic Toolbox, Interval Type-2 Membership Functions, Footprint of 
Uncertainty. 

1   Introduction 

Over the past decade, fuzzy systems have displaced conventional technologies in 
different scientific and system engineering applications, especially in pattern 
recognition and control systems.  The same fuzzy technology, in approximation 
reasoning form, is resurging also in the information technology, where it is now 
giving support to decision-making and expert systems with powerful reasoning 
capacity and a limited quantity of rules. The fuzzy sets were presented by  L.A. Zadeh 
in 1965 [1-3] to process or manipulate data and information affected by 
unprobabilistic uncertainty/imprecision. These were designed to mathematically 
represent the vagueness and uncertainty of linguistic problems; thereby obtaining 
formal tools to work with intrinsic imprecision in different type of problems; it is 
considered a generalization of the classic set theory. Intelligent Systems based on 
fuzzy logic are fundamental tools for nonlinear complex system modeling. Fuzzy sets 
and fuzzy logic are the base for fuzzy systems, where the objective has been to model 
how the brain manipulates inexact information. Type-2 fuzzy sets are used for 
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modeling uncertainty and imprecision in a better way. These type-2 fuzzy sets were 
originally presented by  Zadeh in 1975 and are essentially “fuzzy fuzzy” sets where 
the fuzzy degree of membership is a type-1 fuzzy set [4,6].  The new concepts were 
introduced by Mendel and Liang [8,9] allowing the characterization of a type-2 fuzzy 
set with a inferior membership function and an superior membership function; these 
two functions can be represented each one by a type-1 fuzzy set membership function.  
The interval between these two functions represents the footprint of uncertainty 
(FOU), which is used to characterize a type-2 fuzzy set. The uncertainty is the 
imperfection of knowledge about the natural process or natural state.  The statistical 
uncertainty is the randomness or error that comes from different sources as we use it 
in a statistical methodology. Type-2 fuzzy sets have been applied to a wide variety of 
problems by Castillo and Melin [13]. 

2   Interval Type-2 Fuzzy Set Theory 

A type-2 fuzzy set [6,7] expresses the non-deterministic truth degree with imprecision 
and uncertainty for an element that belongs to a set. A type-2 fuzzy set denoted by 

A
~~

, is characterized by a type-2 membership function ),(~~ ux
A

μ , where x∈X, u 

∈ u
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An example of a type-2 membership function constructed in the IT2FLS Toolbox [15] 
was composed by a Pi primary and a Gbell secondary type-1 membership functions, 
these are depicted in Figure 1.  

 

Fig. 1. FOU for Type-2 Membership Functions 
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If ]1,0[],[,1)( ⊆∈∀= u
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interval type-2 fuzzy set [8] denoted by equation (2). 
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 is a type-2 fuzzy singleton, the membership function is defined by equation (3). 
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Fig. 2. FOU for Gbell Primary Interval Type-2 Membership Functions 

Interval Type-2 Fuzzy Inference System 

The human knowledge is expressed as a set of fuzzy rules. The fuzzy rules are 
basically of the form IF <Antecedent> THEN <Consequent> and express a fuzzy 
relationship or proposition. In fuzzy logic the reasoning is imprecise, it is 
approximated, which means that we can infer from one rule a conclusion even if the  
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antecedent doesn’t comply completely. We can count on two basic inference methods 
between rules and inference laws, Generalized Modus Ponens (GMP) [5,6,8,11] and 
Generalized Modus Tollens (GMT) that represent the extensions or generalizations of 
classic reasoning. The GMP inference method is known as direct reasoning and is 
resumed as: 
 

Rule 1:  IF x1 is A11 and x2 is A21 THEN y1 is C1 
Rule 2:  IF x1 is A12 and x2 is A22 THEN y1 is C2  
Fact:       x1 is B1 and x2 is B2 
______________________________________________ 
Conclusion:             y1 is C 

 
Where A11, A12, A21, A22,C1,C2, B1, and B2 are interval type-2 fuzzy sets. This 
relationship is expressed as: 

='

1
C )]([
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C , where  =meet and =join [10,11,13]. Figure 3 shows an example of 

non-singleton interval type-2 fuzzy logic system with Mamdani reasoning [9], two 
inputs x1 and x2 and output y1. An Interval type-2 Fuzzy Inference System is a rule 
base system that uses Interval type-2 fuzzy logic, instead of Boolean logic utilized in 
data analysis [4,9,11,12]. A rule based Fuzzy Logic System (FLS) contains four 
components: Rules, fuzzifier, inference engine, and output processor that are inter-
connected, as shown in Figure 4.  

 

Fig. 3. Interval Type-2 Fuzzy Reasoning 
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Fig. 4. Type-2 fuzzy logic System 

3   Interval Type-2 Fuzzy Logic System Design 

The Mamdani and Takagi-Sugeno-Kang Interval Type-2 Fuzzy Inference Models [9] 
and the design of Interval Type-2 membership functions and operators are 
implemented in the IT2FLS (Interval Type-2 Fuzzy Logic Systems) Toolbox which 
was build on top of the Matlab® commercial Fuzzy Logic Toolbox. The IT2FLS 
Toolbox [15] contains the functions to create Mamdani and TSK Interval Type-2 
Fuzzy Inference Systems (newfistype2.m), functions to add input-output variables and 
their ranges (addvartype2.m), it has functions to add 22 types of Interval Type-2 
Membership functions for input-outputs (addmftype2.m), functions to add the rule 
matrix (addruletype2.m), it can evaluate the Interval Type-2 Fuzzy Inference Systems 
(evalifistype2.m), evaluate Interval Type-2 Membership functions (evalimftype2.m), 
it can generate the initial parameters of the Interval Type-2 Membership functions 
(igenparamtype2.m), it can plot the Interval Type-2 Membership functions with the 
input-output variables (plotimftype2.m), it can generate the solution surface of the 
Fuzzy Inference System (gensurftype2.m), it plots the Interval type-2 membership 
functions (plot2dtype2.m, plot2dctype2.m), a folder to evaluate the derivatives of the 
Interval type-2 Membership Functions (dit2mf) and a folder with different and 
generalized Type-2 Fuzzy operators (it2op, t2op). 

The implementation of the IT2FLS GUI is analogous to the GUI used for Type-1 
FLS in the Matlab® Fuzzy Logic Toolbox, thus allowing the experienced user to 
adapt easily to the use of IT2FLS GUI [15]. Figures 5 and 6 show the main viewport 
of the Interval Type-2 Fuzzy Inference Systems Structure Editor called IT2FIS 
(Interval Type-2 Fuzzy Inference Systems). 
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Fig. 5. IT2FIS Editor 

 

Fig. 6. Interval Type-2 MF’s Editor 
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4   Simulation Results 

We present results of a comparative analysis of the Mackey-Glass chaotic time-series 
forecasting study using an intelligent cooperative architecture of hybrid methods 
(neuro-genetic, fuzzy-genetic and neuro-fuzzy), with neural networks, type-1 fuzzy 
inference systems (Mamdani, Takagi-Sugeno-Kang), genetic algorithms (GA) and an 
interval type-2 fuzzy logic model, for the implicit knowledge acquisition in a time 
series behavioral data history [14]. Also we present a shower simulation and a truck 
backer-upper simulation with interval type-2 fuzzy logic systems using the IT2FLS 
Toolbox. 

Mackey-Glass Chaotic Time-Series 

To identify the model we make an exploratory series analysis with 5 delays, L5x(t), 
6 periods and 500 training data values to forecast 500 output values. The IT2FLS 
(Takagi-Sugeno-Kang) system works with 4 inputs, 4 interval type-2 membership 
functions (igbellmtype2) for each input, 4 rules (Fig. 7) and one output with 4 
interval linear functions, it is evaluated with no normalized values. The forecasted 
root mean square error  (RMSE) is 0.0235. Table 1 shows the RMSE differences of 
six forecasting methods, where CANFIS (CoActive Neuro-Fuzzy Inference 
Systems) and IT2FLS-TSK (Takagi-Sugeno-Kang) evaluate the best Mackey-Glass 
series forecasts respectively.  The advantage of using the interval type-2 fuzzy logic 
forecasting method is that it obtains better results, even when data contains high 
levels of noise. 

 

Fig. 7. IT2FLS (TSK) Rules 
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Table 1. Forecasting of Time Series 

MACKEY-GLASS METHODS 
RMSE Trn/Chk Epoch Cpu(s)* 

FFNN(Feed-Forward Neural Networks)**† 0.0595 500/500 200 13.36 

CANFIS 0.0016 500/500 50 7.34 

FFNN-GA† 0.0236 500/500 150 98.23 

FLS(TKS)-GA† 0.0647 500/500 200 112.01 

FLS(Mamdani)-GA† 0.0693 500/500 200 123.21 

IT2FLS 0.0235 500/500 6 20.47 

    * POWER BOOK G4 1.5 Ghz / 512 MB RAM. 
  ** Architecture: 4-13-1. † 30 samples average. 

Shower Control Simulation 

In this experiment we evaluate the system response to compare the type-1 and type-2 
controls with the ISE (Integral of Square Error), IAE (Integral of Absolute value of 
the Error) and ITAE (Integral of the Time multiplied by the Absolute value of the 
Error) functionality criteria. The best results were in type-2 controls, as shown in 
Table 2. In figure 8 we show an interval type-2 fuzzy control scheme and in figures 9 
the control results. 

Table 2. Control functionality criteria comparison 

TYPE FLS ISE IAE ITAE VARIABLE 
Type-1 277.3 76.21 3934 Temperature 
Type-2 243.8 64.88 3344 Temperature 
Type-1 0.6735 3.5153 172.35 Flow 
Type-2 0.6427 3.3039 162.63 Flow 

 

Fig. 8. Simulink interval type-2 fuzzy control scheme 
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Fig. 9. Temperature and flow interval type-2 fuzzy control 

Truck Backer-Upper Control Simulation 

In this case study we use a SNR=28 dB signal-to-noise-ratio to generate uncertainty 
in the plant output variables. We compare the type-1 and type-2 controls using the 
mean functionality criteria for each trajectory, obtaining the following results:  
ISE=2.2053, IAE=2.9759 y ITAE=6.2091 for type-1 and ISE=2.0386, IAE=2.8301 
y ITAE=5.7254 for type-2. The type-2 controller was better. In figure 10 have the 
interval type-2 fuzzy control’ scheme and in figure 11 the control results of the car 
trajectories. 

 

Fig. 10. Simulink interval type-2 fuzzy control scheme 
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Fig. 11. Trajectory Interval type-2 fuzzy control 

5   Conclusions 

The time series results show that intelligent hybrid methods and interval type-2 fuzzy 
models can be derived as a generalization of the autoregressive non-linear models in 
the context of time series. This derivation allows a practical specification for a general 
class of prognosis and identification time series models, where a set of input-output 
variables are part of the dynamics of the time series knowledge base. This helps the 
application of the methodology to a series of diverse dynamics, with a very low 
number of causal variables to explain the behavior. The results in the interval type-2 
fuzzy control cases of the shower and truck backer upper have similar results to the 
type-1 fuzzy control with moderate footprints of uncertainty. To better characterize 
the interval type-2 fuzzy models we need to generate more case studies with better 
knowledge bases for the proposed problems, therefore classify the interval type-2 
fuzzy model application strengths. The design and implementation of the IT2FLS 
Toolbox is potentially important for research in the interval type-2 fuzzy logic area, 
thus solving complex problems on the different applied areas. Our future work 
includes improving the IT2FLS Toolbox with a better graphics user interface (GUI), 
integrating a learning technique Toolbox to optimize the knowledge base parameters 
of the interval type-2 fuzzy inference system, and the design of interval type-2 fuzzy 
neural network hybrid models. 
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Abstract. Evolution of cardiac activity is investigated by means of
nonlinear dynamics, namely the method of temporal localization on the
attractor reconstructed from a digitized electrocardiogram signal. Con-
vergence for the function of topological instability at changing dimension-
ality is proven both theoretically and numerically, independently from
personal features of subjects in a latter case. This provides an opportu-
nity to estimate the complexity (expressed through the number of free-
dom degrees) of cardiac dynamics. On the other hand, this instability
function normalized by its average displays a different kind of behav-
ior that somewhat differs for various persons and reflects their individ-
ual features. The essential reduction of computation time and necessary
statistics are also attained by means of the developed algorithm.

Keywords: Nonlinear dynamics, topological analysis, phase space,
embedding, ECG time series.

1 Introduction

Most recent investigations of physiologic processes such as heart rate, blood pres-
sure, or nerve activity have shown that biomedical signals vary in a complex and
irregular way, even during stable external conditions [1-3]. Considerable atten-
tion has been recently devoted to unifying various aspects of cardiac physiology
using nonlinear dynamics, particularly through methods of topological analysis
and fractal geometry [1, 4, 5]. However, accurate and quick diagnosis of the car-
diovascular state of a patient on a base of an electrocardiogram (ECG) analysis is
sometimes rather complicated problem in clinical practice, especially computer
ECG interpretation and processing [6-8]. For improvement of methods of com-
puter ECG processing, various approaches are used, including both nonlinear
dynamics methods [4, 9, 10-11] and spectral-correlative ones [10]. In particular,
in the present paper the dynamics of cardiac activity is investigated by means
of exploring topological properties of the signal attractor in a phase space with
dimension m.

It is worth noting that the computational complexity of fractal-topological
algorithms usually being applied for cardiovascular dynamics investigation makes
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these algorithms rather cumbersome from standpoint of their computer time
and the quantity of required experimental data N . Therefore, the total time
of both observation and diagnosis process becomes rather long that may result
in difficulties in clinical practice. So, in this paper we investigate application
of the topological method based on temporal locality approach to investigation
of phase trajectories. In comparison with the most conventional methods of
fractal-topological analysis based on spatial localization on a chaotic system
(CS) attractor (such as the Grassberger - Procaccia algorithm (GPA) [12-14],
”nearest neighbor” method [15, 16], or the box-count algorithm [1, 17]), the
developed method allows us to obtain reduction of N and computation time, as
well as is insensible to growing m on these characteristics.

2 The Algorithm for Exploration of Topological
Instability

In this section, we develop the algorithm for analysing the features of a CS
leading to the multidimensional attractor in its time evolution (it occurs sim-
ilarly to the Ruelle - Takens model of turbulence) [12, 18]. The efficiency of
consideration of phase trajectories for the proposed algorithm results from re-
duction of required computer resources and experimental data. This is attained
by elaborating a topological method based on temporal localization in relation
to points of an attractor. The most conventional methods of fractal-topological
analysis imply just the spatial localization, i.e. investigation of distribution of
points on the attractor basin based on estimating the quantity of hits into the
m-dimensional cell with size l [1, 5, 14]. Those have rather large computational
complexity that increases for multidimensional cases. For instance, the compu-
tational complexity increases exponentially for the box-count algorithm [17] and
almost linearly for the GPA [13, 14] with growth of m at expense of growing a
number of computational operations. In contrast to these methods, we show that
temporal localization provides more convenient realization of topological analy-
sis with essential reduction of required experimental data and computation time
and makes both these characteristics practically independent on dimensionality
within some restricted range of changing m.

Let us consider a CS whose behavior is described by a system of d nonlinear
differential equations with d kinetic variables. The method of delayed coordinates
(affirmed mathematically by Takens [19]) for reconstruction of phase trajectories
forming an attractor Rm

T (using one variable only η(t)) is given by [5, 15-16, 19]

x
(m)
i = (ηi, ηi+p, ..., ηi+(m−1)p), (1)

where η(iΔt) = ηi, i = 1, 2, ..., N is a time series (TS) of a kinetic variable
measured from the CS with a fixed time interval Δt, τ = pΔt is the delay time,
p is an integer. The points x

(m)
i ⊂ Rm, Rm is an Euclidean phase space with

a dimension m, i = 1, 2, ..., L(p,m), the common quantity of the attractor points
is given by L(p,m) = N − p(m − 1). In accordance with (1), phase trajectories
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forming the attractor Rm
T can be represented as a superposition of p rarefied

sequences X1, X2, . . . , Xp shifted by one sample with respect to each other, those

are defined as Xs = {x
(m)
s+p(k−1)}

L
(p,m)
s

k=1 . These sequences are formed by p rarified

TS Ψ1, Ψ2, . . . , Ψp obtained from the initial one, where Ψs = {ηs+p(k−1)}
N(p)

s

k=1 ,
L

(p,m)
s = N

(p)
s − m + 1.

Since some samples of TS are repeated within separate Xs sequences at di-
rect representation of Rm

T by (1), we construct a compact representation A(m) =
X

(m)
0 ∪ �(m) ∪ D(m) of Rm

T excluding such redundancy using temporal locality
properties. In such a case, the following notations are being introduced: (i) a
set of initial points X

(m)
0 = {x

(m)
1 , x

(m)
2 , . . . , x

(m)
p }, (ii) a set �(m) of distances

between points with nearest indices within all Xs, namely �(m) = {�(m)
s }p

s=1,

where �(m)
s = {r

(m)
(s+p(k−1))↑}

L(p,m)
s −1

k=1 , and (iii) a set of orientation sequences

D(m) = {D
(m)
s }p

s=1, where D
(m)
s = {d

(m)
(s+p(k−1))}

L(p,m)
s −1

k=1 . Distances r
(m)
k↑ are the

ones between points x
(m)
k and x

(m)
k+p, these points are separated by the min-

imal temporal interval τ in a sequence of points within some Xs. Those are
given by

r
(m)
k↑ =

⎡

⎣
m∑

j=1

Δη2
k+(j−1)p

⎤

⎦

1
2

, (2)

where Δηk = ηk+p − ηk. Terms of the orientation sequence allowing elimina-
tion of ambiguity at successive determination of phase trajectories are defined
as follows

d
(m)
k = sgn(Δηk+(m−1)p) (3)

where it is supposed that sgn(0) = 1. From (1) - (3) one can show the unique-
ness of such representation, i.e. that the map GT : X(m) → A(m) and the inverse
one G−1

T : A(m) → X(m) exist and are determined by only one way, where
X(m) = {x

(m)
k }L(p,m)

k=1 .
But the set A(m) is not invariant to the linear transformations of TS when

the topological structure of Rm
T does not change (at uniform shift of Rm

T points
and uniform stretching (narrowing) of distances on Rm

T ). So, for characterization
of the topological structure we derive from A(m) the measure S(m) = B(m) ∪
D(m), where B(m) = {B

(m)
s }p

s=1, and B
(m)
s = {β

(m)
(s+p(k−1))}

L(p,m)
s −2

k=1 represents a
sequence of relative distances

β
(m)
k =

r
(m)
(k+p)↑
r
(m)
k↑

. (4)

The set S(m) offered as a characteristic of the topological structure does not
change at such transformations of Rm

T , which are characterized by (i) uniform
change of distances on Rm

T or (ii) uniform shift of its points. On the other hand,
under determination of additional conditions of absence of such transformations,
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this set is sufficient for the complete determination ofRm
T . It can be shown sim-

ilarly [20].
On a basis of S(m) consideration, let us investigate the dynamics of the topo-

logical structure of Rm
T when increasing m. It reflects the features of temporal

behavior of a CS under investigation and again allows obtaining characteristics
to be needed for optimal reconstruction of phase trajectories. A proper choice
of a minimal embedding dimension m0 allows both computational complexity
and the necessary amount of experimental data to be reduced for respective al-
gorithms of the fractal-topological analysis [15, 21]. Besides, m0 characterizes a
number of CS freedom degrees and defines minimal quantity of differential equa-
tions, required for modeling the CS under investigation [12]. Takens obtained the
following estimate for dimensionality: m ≥ 2d + 1 [19], while in a series of sub-
sequent works it was shown (mostly by means of numerical simulations) [15, 16]
that m < 2d + 1 can be good enough for reconstruction of phase trajectories.

At Rm → Rm+1, the shift of every sample of the orientation sequence towards
a point with a nearest index within a certain Xs takes place, i.e.

d
(m+1)
l = d

(m)
l+p , (5)

where l = 1, 2, ..., L(p, m+1)−p. It follows from the expression (3), determining the
orientation sequence. From (5) one can see that D(m) reflects only linear changes
of S(m). So, for estimating nonlinear changes in Rm

T structure at Rm → Rm+1,
explore changes in B(m), therefore introduce a sequence of ratios

γ
(m↑)
j =

β
(m)
j

β
(m+1)
j

, (6)

where j = 1, 2, ..., L(p,m+1) − 2p. In a case of completely uniform topological
dynamics (that is called the ideal topological stabilization (ITS), similarly to
[20]), the terms β

(m)
k have no changes at Rm → Rm+1 and γ

(m↑)
j ≡ 1 on such

condition.
Rewrite (6) in the form

γ
(m↑)
j =

√√√√1 + μ
(m)
j

1 + μ
(m)
j+p

, (7)

where the relative partition sequence (RPS) {μ
(m)
j } is constructed by means of

segmentation of difference-quadratic TS Δη2
j and is defined as follows:

μ
(m)
j =

Δη2
j+mp

σ̃
(m)
j

, (8)

where partition sums are σ̃
(m)
j =

m−1∑
i=0

Δη2
j+ip and j = 1, 2, ..., L(p,m+1)−p. Using

{μ
(m)
j } for characterization of topological dynamics permits higher accuracy of
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m0 determination as it is shown by means of numerical simulations. Analogously
[20], introduce the following measure of topological instability:

ZΣ
μ (m) = σ(μ(m)

j ), (9)

where σ(μ(m)
j ) is the mean square variance (MSV):

σ(μ(m)
j ) =

√
〈
(
μ

(m)
j − 〈μ(m)

j 〉
)2

〉, the averaging is made over Rm
T points. In a

case of ITS, supposing γ
(m↑)
j ≡ 1, one can obtain from (7) that μ

(m)
j ≡ μ(m),

where μ(m) is constant ∀j. On the other hand, any local change in {μ
(m)
j } se-

quence entails corresponding change in {γ
(m↑)
j }. The measure ZΣ

μ (m) declines

with enlarging m (for μ
(m)
j → 0 at m → ∞), and near the point m = m0 the

dependence ZΣ
μ (m) is expected to display a sharp decrease because of topolog-

ical stability appearance, this fact is shown by means of computer experiments
and is used for m0 determination. But because of monotonic decrease of μ

(m)
j ,

even for m > m0, we cannot estimate asymptotic deviation ZΣ
μ (m) from ITS

without considering inevitable reduction of μ
(m)
j . So, we introduce the following

normalization and obtain the normalized instability function:

�

Z
Σ

μ (m) =
ZΣ

μ (m)〈
μ

(m)
j

〉 . (10)

Taking into account that ZΣ
μ (m) =

√〈
(μ(m)

j )2
〉

−
〈
μ

(m)
j

〉2
, one can rewrite

(10) in the form

�

Z
Σ

μ (m) =

⎛

⎜⎝

〈
(μ(m)

j )2
〉

〈
μ

(m)
j

〉2 − 1

⎞

⎟⎠

1
2

. (11)

As it was recently shown, rarefying on attractor points is reasonable for nu-
merical simulation of fractal-topological analysis [16]. Otherwise, using points
that are too close together in time leads to essential underestimates of the di-
mension, i.e. to aggravating accuracy of the topological analysis. So, we also im-
plement temporal rarifying of phase trajectories for creating a subset of points
with reduced correlative relations in the embedding space. It is attained by the
approach that is realized in the most convenient way, namely we use only one
Xs for numerical experiments.

For this reason, in the present work the numerical simulations are made using
the sequence Ψp = {ηp, η2·p, . . . , η

N
(p)
p ·p}, and rarifying is determined as p=2 in

this work, where the length of rarefied TS N
(p)
p ≈

[
N
p

]

int
, [.]int is an integer part

of a number. Denoting its components for brevity as Ψp = {ξ1, ξ2, . . . , ξ
N

(p)
p

}, we
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obtain that terms of reduced RPS {μ̂
(m)
j } constructed by means of segmentation

of {Δξ2
j+i} TS are defined analogously (8) as follows

μ̂
(m)
j =

Δξ2
j+m

σ̂
(m)
j

, (12)

where σ̂
(m)
j =

m−1∑
i=0

Δξ2
j+i, Δξj = ξj+1 − ξj . In turn, the topological instability

function for rarified TS is defined similarly to (9)

Zμ(m) = σ(μ̂(m)
j ), (13)

while the normalized instability function reflecting relative variance on {μ̂
(m)
j }

is calculated analogously (11) as follows:

�

Zμ(m) =

⎛

⎜⎝

〈
(μ̂(m)

j )2
〉

〈
μ̂

(m)
j

〉2 − 1

⎞

⎟⎠

1
2

. (14)

As follows from (14),
�

Zμ(m) ≡ 0 in a case of ITS, when uniform change of dis-
tances takes place at enlarging dimensionality. At the same time, normalization
in a form of (10) reflects statistical indeterminacy at enlarging mbecause both
numerator and denominator in (10) tend to zero at m → ∞. Nevertheless, in this
paper we prove numerically that this dependence provides useful information in
a case of ECG signal processing.

3 Numerical Simulations with ECG Signal

In this work the digitized ECG TS ςi containing N=2500 points is used for
calculation of topological curves, time interval of discretization Δt = 0.002 s.
The obtained TS are those of adult healthy subjects, four samples containing
first two thousand of discrete levels ςi of measured TS are shown in Fig. 1. We
explore two groups of databases: the first group is obtained from subjects in a
state of rest (most typical examples are shown in Fig 1, (a) and (b), pulse rate
for ECG pertaining to this group is 58-70), and the second group, where ECG
TS are measured from subjects which undergo very intensive physical exercises
(see Fig 1, (c) and (d), pulse rate for such group is 90-100 typically and even 110-
114 for some cases). For investigation of cardiovascular dynamics at relatively
long time ranges (for providing a high reliability), we take more than seven
QRS-complexes, though the convergence of the locally topological approach can
be attained using only three ones [20]. For decreasing linear autocorrelation
effect and reduction of influence of low-frequency periodical component, we use
difference TS ηi = ςi − ςi+1 instead of ”raw” digitized ECG signal ςi (as well
as in [5]). The phase trajectories for three-dimensional attractors reconstructed
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Fig. 1. The initial ECG signals: a) and b) reflect slow cardiac processes in a state of
rest; c) and d) are obtained under physical exercises
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Fig. 2. Temporal evolution of cardiac activity represented through the phase trajecto-
ries reconstructed from the difference ECG TS: a) p = 1; b) p = 20

from ηi by (1) at p = 1 and p = 20 respectively are shown in Fig. 2, a) and b),
the latter case reveals the effect of partial decorrelation (similarly [5]).

For investigation of relationships between features of cardiac activity and
topological dependencies, we calculated topological curves using ECG taken out
of twenty separate databases, half of those is obtained from subjects in a state
of rest, while half is measured under physical exercises (as it was mentioned
above). The ECG TS forming these databases were obtained from healthy adult
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subjects at different time within about three months. At calculation of topo-
logical dependencies, the following additional normalization is used for scale
unification:

Y (m) =
Zμ(m)
Zμ(1)

; (15)

�

Y (m) =
�

Zμ(m)
�

Zμ(1)
. (16)

The functions Zμ(m),
�

Zμ(m) are calculated by (13), (14) using expressions (12),

averaging in (13) - (14) being implemented as follows
〈
μ̂

(m)
j

〉
= 1

ΔN

Nμ∑
j=i0

μ̂
(m)
j ,

where ΔN = Nμ − i0 + 1, i0 is chosen so that to avoid the initial points of ECG
TS where transitive processes may occur, in this paper i0 = 5. In turn, Nμ is
determined according to above couched considerations (see (1)), i.e.

Nμ = N (p)
p − m − 2. (17)

We calculated more than thirty dependencies (15), (16) altogether for both
above mentioned groups, and most typical results are shown in Figs. 3-4. These
dependencies display sufficient convergence for Y (m) at m ≥ m0, i.e. m0 is just
the value of the dimension that provides preservation of topological structure
of phase trajectories at enlarging dimensionality beyond m0 and thus can be
really considered as the minimal embedding dimension of the attractor. The
convergence of Y (m) is shown to be of the same character, almost independently
on individual features of subjects, and one can conclude that m0 = 5 is sufficient
for optimal embedding of the attractor into Takens’ phase space for ECG derived
at the state of rest (under physical activity this value increases to 7, as one can
conclude from Fig. 4). These values are in a good coincidence with those obtained

in [5] using GPA. On the other hand, the dependence
�

Y (m) is approximately
linear at m ≥ m0, but it differs for various persons with respect to average
level of convergence and slant angle. Evidently, it can provide some additional
information concerning individual features of subjects that seems to be useful
for the sake of early diagnosis.

One can conclude from Figs 3-4 that any essential change of ECG form (ap-
pearance and increase of lateral peaks, as well as pulse rate deviation) leads to
related change of topological curves (for instance, increase of cardiac activity
at physical exercises entails the growth of m0, as mentioned above). Again, at
processing of ”slow” ECG we noticed that the growth of S-peak leads to lowering
the main peaks for both Y (m) and

�

Y (m). Such typical effect is shown in Fig. 3,
a) and b) (see the line with circle markers). For ”fast” ECG, the increase of slant

angle for
�

Y (m) is evident (at the region of convergence for Y (m), see Fig.4) in
comparison with that for ”slow” ones. This allows us to suppose that the ex-
tent of cardiac activity has influence on this characteristic, especially it is explicit
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Fig. 3. The topological dependencies calculated using ECG TS obtained from slow
cardiac processes in a state of rest; lines with square, circle, and x-markers correspond
to ECG of different subjects taken out of separate databases, namely x-markers line is
obtained from ECG shown in Fig.1 (a), circles markers line - from (b)
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Fig. 4. The topological dependencies calculated using ECG TS obtained under physical
exercises (with enlarged puls rate); lines with square, circle, and x-markers correspond
to different subjects, namely x-markers line is obtained from ECG shown in Fig.1 (c),
square markers line - from (d)
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Fig. 5. The topological dependencies calculated at changing length of ECG TS mea-
sured from the same subject: lines with square markers correspond to N = 2000; lines
with circle markers - N = 2500; lines with x-markers - N = 3000; and lines with
diamonds - N = 3500

in a case of large loading (see ECG in Fig. 1, d) and corresponding curves in
Fig. 4, b)). The mentioned circumstances display relationship between some
features of cardiac activity and topological dependencies.

Calculation of
�

Y (m) has also allowed us to detect one ”abnormal” case with

monotonic decline of
�

Y (m) at m > m0. This case is shown in Fig. 3, the line
with square markers. The subject with such ECG has no any cardiac pathology,
nevertheless he delivered some complaints of weakness and refused from any
physical exercises on that day.

We also calculated the curves for different length N of TS (see Fig. 5). The
obtained curves show that changing N from 2000 to 3500 does not result in
essential change of the form of topological dependencies, and N = 2500 used in
this work is enough for obtaining reliable results.

4 Evaluation of Obtained Results and Discussions

The obtained results of embedding determination on Y (m) are in a good coin-
cidence with results obtained in [5] by GPA, where slopes of the plots ln C(l)
versus ln l appear to be same for m ≥ 6. It is worth noting that in GPA method
N = 16000 [5], while in our experiments N=2500 (moreover, the length of really
used rarefied TS N

(p)
p = 1250) that means a significant reduction of required

experimental data.
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For the algorithm developed in this paper, required quantity of experimental
data N is not only less than for spatially-localized methods [5, 21], but is con-
stant ∀ m ∈ [1, mmax]. At the same time, when using the GPA N increases
exponentially with growth of m (see [13] and references therein).

Computation time of the proposed algorithm tcom does not depend on m
within a certain segment [1, mmax] due to the following recurrent relationship
with respect to σ̂

(m)
j calculation derived from (12)

σ̂
(m+1)
j = σ̂

(m)
j + Δξ2

j+m (18)

In the developed algorithm, the reduction of tcom is achieved due to minimal
quantity of computation operations required for topological dynamics analysis.
It takes place because the proposed analytical model of temporal localization
implies the use of minimal quantity of neighboring points, and no additional
operations are required for detection of those. Again, functional relationships
for estimating the topological nonuniformity (including averaging) are also very
convenient for computer calculations. Additional reduction of tcom results from
shortening the used TS as is mentioned above.

We have calculated the topological dependencies using a computer with rel-
atively low clock rate of the processor (about 150 MHz). Nevertheless, compu-

tation time for calculation of one dependence Y (m) or
�

Y (m) is only tcom=36
s. For comparison, we calculated the dependence of correlation integral C(l) by
GPA, in such a case tGPA

com =27 min (it is worth noting that for reflection of topo-
logical dynamics approximately ten such dependencies C(l) at various m must
be calculated). The improved scheme of calculation and comparative sorting of
distances on Rm

T based on locality properties of (1) (this scheme is developed in
[22]) is applied at the calculations with GPA.

Thus, the convergence of the proposed algorithm of temporal localization for
the ECG TS attractor is shown, that can be used for purposes of diagnosis
because the m0 value allows an estimate of the freedom degrees of ECG signal
and complexity degree of myocardium dynamics.

5 Conclusions

In this paper, we implement the estimation of characteristics of ECG signal at-
tractor for several different databases by means of the topological method based
on temporal localization. The computer experiments showed good convergence
for the asymptotic measure of topological instability independently on personal
features of subjects (except a factor of exercises, when slight shift of convergence
region is possible), in spite of presence of noise. This allows estimation of free-
dom degree of cardiac dynamics. On the other hand, that instability function
normalized by average displays different kind of behavior that differs for various
persons with respect to the average level of convergence and a slant angle. It pro-
vides some additional information concerning individual features of subjects that
seems to be useful for the sake of early diagnosis. From topological standpoint,
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one can conclude that such different behavior of
�

Zμ(m) describes deviation of
the structure of ECG attractor from that of a fractal manifold obtained from a
model TS, because convergence of

�

Zμ(m) is quite uniform for application of the
algorithm to an attractor reconstructed from chaotic TS obtained from delay
differential equations (as it is shown in [20]), such type of TS represents just the
model ones reflecting the multidimensional behavior of a CS.

These results provide information that reflects temporal evolution of cardiac
activity. Numerical simulations proved good accuracy of determination of topo-
logical characteristics. These results are obtained with essential reduction of
required experimental data (about by an order, taking into account the rarefy-
ing stage). The reduction of computation time at the expense of minimization
of computational operations is also attained.

In conclusion, the proposed algorithm being pertained to those based on non-
linear dynamics methods provides information that can not be obtained with
traditional spectral-correlative approaches (including, first of all, spectral anal-
ysis, autocorrelation function calculation, and linear regression methods). As it
has been shown in this paper, consideration of topological dynamics of the at-
tractor embedding can be reduced to nonlinear analysis of ECG TS. At the same
time, the above couched algorithm has some similar features with respect to com-
mon statistical methods as it deals with averaging of strings derived from digital
information (measured in experiments or obtained from proper differential equa-
tions describing nonlinear phenomena observed in a CS under investigation).
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Abstract. We propose an efficient nonparametric missing value imputation 
method based on clustering, called CMI (Clustering-based Missing value 
Imputation), for dealing with missing values in target attributes. In our 
approach, we impute the missing values of an instance A with plausible values 
that are generated from the data in the instances which do not contain missing 
values and are most similar to the instance A using a kernel-based method. 
Specifically, we first divide the dataset (including the instances with missing 
values) into clusters. Next, missing values of an instance A are patched up with 
the plausible values generated from A’s cluster. Extensive experiments show the 
effectiveness of the proposed method in missing value imputation task. 

1   Introduction 

Missing values imputation is an actual yet challenging issue confronted in machine 
learning and data mining [1, 2]. Missing values may generate bias and affect the 
quality of the supervised learning process or the performance of classification 
algorithms [3, 4]. However, most learning algorithms are not well adapted to some 
application domains due to the difficulty with missing values (for example, Web 
applications) as most existed algorithms are designed under the assumption that there 
are no missing values in datasets. That implies that a reliable method for dealing with 
those missing values is necessary. Generally, dealing with missing values means to 
find an approach that can fill them and maintain (or approximate as closely as 
possible) the original distribution of the data. For example, in a database, if the known 
values for an attribute A are: 2 in 60% of cases, 6 in 20% of cases and 10 in 10% of 
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cases, it is reasonable to expect that missing values of A will be filled with 2 (if A is 
discrete) or 3.4 (if A is continuous) (see [5]). 

Missing values may appear either in conditional attributes or in class attribute 
(target attribute). There are many approaches to deal with missing values described in 
[6], for instance: (a) Ignore objects containing missing values; (b) Fill the missing 
value manually; (c) Substitute the missing values by a global constant or the mean of 
the objects; (d) Get the most probable value to fill in the missing values. The first 
approach usually lost too much useful information, whereas the second one is time-
consuming and expensive in cost, so it is infeasible in many applications. The third 
approach assumes that all missing values are with the same value, probably leading to 
considerable distortions in data distribution. However, Han et al. 2000, Zhang et al. 
2005 in [2, 6] think: ‘The method of imputation, however, is a popular strategy. In 
comparison to other methods, it uses as more information as possible from the 
observed data to predict missing values. 

Traditional missing value imputation techniques can be roughly classified into 
parametric imputation (e.g., the linear regression) and non-parametric imputation 
(e.g., non-parametric kernel-based regression method [20, 21, 22], Nearest Neighbor 
method [4, 6] (referred to as NN)). The parametric regression imputation is superior if 
a dataset can be adequately modeled parametrically, or if users can correctly specify 
the parametric forms for the dataset. For instance, the linear regression methods 
usually can treat well the continuous target attribute, which is a linear combination of 
the conditional attributes. However, when we don’t know the actual relation between 
the conditional attributes and the target attribute, the performance of the linear 
regression for imputing missing values is very poor. In real application, if the model 
is misspecified (in fact, it is usually impossible for us to know the distribution of the 
real dataset), the estimations of parametric method may be highly biased and the 
optimal control factor settings may be miscalculated.  

Non-parametric imputation algorithm, which can provide superior fit by capturing 
structure in the dataset (note that a misspecified parametric model cannot), offers a 
nice alternative if users have no idea on the actual distribution of a dataset. For 
example, the NN method is regarded as one of non-parametric techniques used to 
compensate for missing values in sample surveys [7]. And it has been successfully 
used in, for instance, U.S. Census Bureau and Canadian Census Bureau. What’s more, 
using a non-parametric algorithm is beneficial when the form of relationship between 
the conditional attributes and the target attribute is not known a-priori [8].  

While nonparametric imputation method is of low-efficiency, the popular NN 
method faces two issues: (1) each instance with missing values requires the 
calculation of the distances from it to all other instances in a dataset; and (2) there are 
only a few random chances for selecting the nearest neighbor. This paper addresses 
the above issues by proposing a clustering-based non-parametric regression method 
for dealing with the problem of missing value in target attribute (named Clustering-
based Missing value Imputation, denoted as CMI). In our approach, we fill up the 
missing values with plausible values that are generated by using a kernel-based 
method. Specifically, we first divide the dataset (including instances with missing 
values) into clusters. Then each instance with missing-values is assigned to a cluster 
most similar to it. Finally, missing values of an instance A are patched up with the 
plausible values generated from A’s cluster.  
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The rest of the paper is organized as follows. In section 2, we give related work on 
missing values imputation. Section 3 presents our method in detail. Extensive 
experiments are given in Section 4. Conclusions and future work are presented in 
Section 5. 

2   Related Work 

In recent years, many researchers focused on the topic of imputing missing values. 
Chen and Chen [9] presented an estimating null value method, where a fuzzy 
similarity matrix is used to represent fuzzy relations, and the method is used to deal 
with one missing value in an attribute. Chen and Huang [10] constructed a genetic 
algorithm to impute in relational database systems. The machine learning methods 
also include auto associative neural network, decision tree imputation, and so on. All 
of these are pre-replacing methods. Embedded methods include case-wise deletion, 
lazy decision tree, dynamic path generation and some popular methods such as C4.5 
and CART. But, these methods are not a completely satisfactory way to handle 
missing value problems. First, these methods only are designed to deal with the 
discrete values and the continuous ones are discretized before imputing the missing 
value, which may lose the true characteristic during the converting process from the 
continuous value to discretized one. Secondly, these methods usually studied the 
problem of missing covariates (conditional attributes). 

Among missing value imputation methods that we consider in this work, there are 
also many existing statistical methods. Statistics-based methods include linear 
regression, replacement under same standard deviation, and mean-mode method. But 
these methods are not completely satisfactory ways to handle missing value problems.  
Magnani [11] has reviewed the main missing data techniques (MDTs), and revealed 
that statistical methods have been mainly developed to manage survey data and 
proved to be very effective in many situations. However, the main problem of these 
techniques is the need of strong model assumptions. Other missing data imputation 
methods include a new family of reconstruction problems for multiple images from 
minimal data [12], a method for handling inapplicable and unknown missing data 
[13], different substitution methods for replacement of missing data values [14], 
robust Bayesian estimator [15], and nonparametric kernel classification rules derived 
from incomplete (missing) data [16]. Same as the methods in machine learning, the 
statistical methods, which handle continuous missing values with missing in class 
label are very efficient, are not good at handling discrete value with missing in 
conditional attributes. 

3   Our Algorithm 

3.1   Clustering Process Strategy 

The process of grouping a set of physical or abstract objects into classes of similar 
objects is called clustering. In this paper, we use a clustering technique, such as,  
K-Means [17] to group the instances of the whole dataset (denoted as S). We separate 
the whole database S into clusters each of which contains similar instances. When S 
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has more than one discrete attribute, we then use the simple matching method to 
compute the similarities of these discrete attributes and use the Euclidean distance to 
process the continuous attributes. Then the distance between instance and cluster 
center is a mixed one, which is a combination distances of the discrete and continuous 
attributes based on [6]. 

Our motivation in this paper is based on the assumption [6] that the instance with 
missing values is more likely to have the similar target attribute value as the instance 
that is closest to it based on the distance’s principle, such as, the Euclidean distance. 
So we adopt the clustering method on the whole dataset in order to separate the 
instances into clusters based on the differences of their distances. Then the non-
parametric method is utilized to deal with missing values for each cluster. Note that 
K=1 is a special case of K-Means method, it is the situation without clustering, that is 
to say, it is only a simple kernel-based imputation method while the number of 
clusters is 1 in our CMI algorithm. Our goal in this paper is to show the effectiveness 
of our method than the kernel function without clustering. Given K=1 and K>1, we 
can compare the performance of this non-parametric method with and without 
clustering the dataset. We adopt the well-known K-Means as clustering algorithm 
mainly for its simplicity and efficiency. As an alternative, one can choose a more 
powerful clustering technique for this task, for example, the G-means algorithm [19] 
that can determine the parameter K automatically for the clustering task. 

3.2   Kernel Function Imputation Strategy  

Kernel function imputation is an effective method to deal with missing values, for its 
computationally efficient, robust and stable [20]. In the statistical area, kernel 
function completion is also known as kernel nonparametric regression imputation. For 
instance, Zhang [20] uses the kernel method to impute missing values. In this paper, a 
kernel function nonparametric random imputation is proposed to make inference for 
the mean, variance and the distribution function (DF) of the data.  

Let X be an n×d-dimensional vector and let Y be a variable influenced by X, we 
denote X, Y as factor attributes (FA) (or conditional attributes) and target attribute 
(TA) respectively. We assume that X has no missing values, while only Y has. To 
simplify the discussion, the dataset is denoted as ( , ,..., , , ), 1,...,

1 2
X X X Y i n

i i id i i
δ = , 

where 
i

δ is an indictor function, i.e., 0
i

δ = if Yi is missing and 1
i

δ = if Yi is not 

missing. In a real world database, we suppose that X and Y satisfy: 

( , ,..., ) , 1,..., .
1 2

Y m X X X i n
i i i id i

ε= + =  (1) 

Where ( , ,..., )
1 2

m X X X
i i id

is an unknown function, 
i

ε is a random error with mean 0 

and variance 2σ . In other words, we assume that Y has relation with X, but we have 
not any idea about it. In the case of the unknown function m(.) is a linear function, 
Wang and Rao [21, 22] show that the deterministic imputation method performance 
well in making inference for the mean of Y, Zhang [20] shows that one must use 
random imputation method in make inference for distribution functions of Y when the 
unknown function m(.) is a arbitrary function because in many complex practical 
situations, the unknown function m(.) is not a linear function.  
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In Eq.1, suppose Yi is missing, and the value of m(Xi)=m(Xi1, Xi2,…, Xid) is 
computed by using kernel methods as follows: 

( )11
( , ,..., ) , 1,..., ,

1 2

2( )11

X X
is jsn dY Ksj j j hm X X X i n

i i id X
is X

jsn d K nsj j h

δ

δ

−
∑ ∏ === =

−
−+∑ ∏ ==

)
 (2) 

Where ( )m X
) is the kernel estimate of the unknown function m(X) and n-2 is introduced 

in order to avoid the case that 
1

( )1
n

j

X X
is jsd Ksj h

δ
=

−
∏ =∑   vanishes, and h refers 

to bandwidth with h=Cn-1/5 (we will discuss the choosing of h later in this paper). The 
method of using ( )im X

)  as imputed value of Yi is called kernel imputation. 

In Eq.2, K(.) is a kernel function. There are many commonly used forms of kernel 
functions, such as the Gaussian kernel: 

1 2( ) exp( / 2)
2

K x x
π

= −  

and the uniform kernel is presented as follows: 

1/ 2,  |x| 1,
( )

0,      |x|>1.
K x

≤⎧
= ⎨
⎩

 

There are not any differences for selecting the kinds of the kernel function if the 
optimal bandwidth can be received during the process of learning. In this paper, we 
adopt the widely used Gaussian kernel function. 

3.3   The Strategy for Evaluating Unknown Parameters of Imputed Data  

We are interesting in make inferences for the parameters of the target attribute Y such 
as ( )E Yμ = , 2 ( )D Yσ =  and ( )

0
F yθ = , i.e. the mean, the variance and the 

distribution function of Y, where y0 is a fixed point, 0y R∈ . Based on the complete 

data after imputation, above parameters can be estimated as follows. 
The mean of Y is given by: 

1 *ˆ { (1 ) }1
nY Y Yi i i iin

δ δ= + −∑ =  
(3) 

Where * ˆ ( )Y m X
i i

=  if Y is completed by the kernel deterministic imputation method. 

The variance of Y is given by: 

212 * ˆ[ ( (1 ) ) ]1
n Y Y Y Yi i i i i in

σ δ δ= + − −∑ =  (4) 
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In real applications, it is very difficult to work out the exact form of the distribution 
function of Y. So, we use the empirical form of the distribution function of Y replacing 
the values of the distribution function of Y: 

1 *ˆ ( ) ( (1 ) )10 0
nF y I Y Y yi i i i in

δ δ= + − ≤∑ =  (5) 

where I(x) is the indicator function, *Y
i

is the imputed data processed by the kernel 

imputation methods. 

3.4   Clustering-Based Missing Value Imputation Algorithm 

This section presents our CMI method for missing data completion. By using the 
clustering techniques on the factor attributes (i.e., X), we divide the whole dataset into 
clusters. After clustering, we then utilize the kernel method to fill the missing-valued 
instance for each cluster. Note that in this paper, the kernel method is utilized to deal 
with the situation that Y is continuous. As for the situation of Y is discrete, we can use 
the nearest neighbor method (NN) to complete the missing values. Based on the 
above discussions, the CMI algorithm is presented as follows. 
 
Procedure: CMI 
Input: Missing-valued dataset S, k; 
Output: Complete dataset S’; 

1.    (C1,C2,…Ck )←k-means(S, k);    
2.    FOR each cluster Ci 
3.        FOR each missing-valued instance Ik in cluster Ci 
4.               use Eq. (2) to comput ˆ ( )m X

i
, R; 

5.        FOR each missing-valued instance Ik in cluster Ci 
6.                  use ˆ ( )m X

i
 to fill missing-value in Ik; 

7.        S’← 1
k C ii =U ; 

3.5   The Choosing of c and Complexity Analysis 

Kernel methods can be decomposed into two parts: one for the calculation of the 
kernel and another for bandwidth choice. Silverman [23] stated that one important 
factor in reducing the computer time is the choice of a kernel that can be calculated 
very quickly. Having chosen a kernel that is efficient to compute, one must then 
choose the bandwidth. Silverman [23] turns out that the choice of bandwidth is much 
more important than the choice o f kernel function. Small value of bandwidth h makes 
the estimate look ‘wiggly’ and shows spurious features, whereas too big values of h 
will lead to an estimate that is too smooth, in the sense, that it is too biased and may 
not reveal structural features. There is no generally accepted method for choosing the 
bandwidths. Methods currently available include ‘subjective choice’ and automatic 
methods such as the “plug-in”, ‘cross-validation’ (CV), and ‘penalizing function’ 
approaches. In this paper we use the method of cross-validation to minimize the 
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approximate mean integrated square error (AMISE) of ˆ ( )im x . For a given sample of 

data, the CV function is defined as: 

2

1
ˆ( ( , ))

n

i ii
C V y m x c−=

= −∑  (6) 

where ˆ ( , )im x c−  denotes the leave-one-out estimator evaluated for a particular value 

of c.  
That is, the value of the missing attribute of instance i is predicted by all of the 

instances except instance i itself in the same class. Thus, for every missing value 
prediction, nearly all of the instances are selected as compared instances.  

The time complexity of the kernel method is 2( )O n , where n is the number of 

instances of the dataset. After clustering, assume that the dataset is divided into k 
clusters, where ( 1,2,..., )in i k=  is the size of cluster i. Because our CMI algorithm 

performs the kernel method independently on each cluster for missing value filling, so 
the complexity of our clustering-based kernel imputation method is 2( )jO n , where 

jn is the biggest number, i.e., cluster j is the largest one of all the clusters. Generally 

speaking, jn is smaller than n when k>1, so we have 2 2( ) ( )jO n O n< . That is, the time 

complexity of our method is better than the method in [20] without clustering. 

4   Experimental Studies 

In order to evaluate the effectiveness of our approach, we have conducted extensive 
experiments on datasets from the UCI machine learning repository [18]. We evaluate 
our algorithm on the dataset abalone, which contains 8 continuous attributes, one 
class attribute and 4177 instances in total. The other dataset is housing dataset, which 
contains 13 continuous attributes (including "class" attribute "MEDV"), one binary-
valued attribute and 506 instances in total. For ease of comparison, we use random 
missing mechanism to generate missing values with missing rates at 5%, 20% and 
40%. In the previous discussions of our strategy for handling missing values, we 
know that the situation of K=1 (i.e., only one cluster) is the special case, which is 
equal to the situation of processing the whole dataset without clustering and also 
similar to the kernel-based imputation method without clustering in [20].  

In this paper we only report results on the mean and distribution function of Y. We 
use the AE (average error) to measure performance in making inference on the 
former two parameters: 

1 ˆ( | | / )1
kA E V V Vi i i ik

∑= −=  (7) 

Where V̂
i

 is the estimated parameter (variance or empirical distribution function) 

value, computed from the imputed target attribute, and V
i
 is the parameter value of 

the original target attribute and k is the number of clusters.  
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In this paper, for the abalone dataset, the last attribute Rings is set to target 
attribute, others are set to factor attributes. The experimental results on abalone are 
presented in Figure 1, from (1) to (6). For the housing dataset, the attribute MEDV is 
set to target attribute, the results are presented in Figure 2, from (7) to (12). In these 
figures, ‘Mean substitution’ means the method of imputing missing values with mean, 
our method is regard as ‘CMI’. In particular, it is the method in [20] while k=1 in our 
method, i.e., it is the method for missing values imputation without cluster. 
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Fig. 1. CMI vs Mean substitution under different missing rates on dataset abalone for variance 
and distribution function 
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Fig. 2. CMI vs Mean substitution under different missing rates on dataset housing for variance 
and distribution function 

From above figures, the method ‘Mean substitution’ is worst, the kernel method 
without clustering (k=1 in our CMI algorithm) outperform the former, and we can see 
that the clustering-based kernel method performs better most of the time than the 
kernel method that without clustering (i.e., the situation of k=1 when using k-means) 
in terms of variance and distribution function. All of results of our method are better 
than the results of the method ‘Mean substitution’. What’s more, with increase of 
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cluster number k, the average errors (AE) for variance and distribution function are 
decreasing. That implies that it is reasonable for us to impute missing values with 
cluster-based kernel methods. Yet the value of AE will increase when the number of 
clusters is big enough, this trend will be observed in the above figures. That is to say, 
the more clusters the worse performance the results of imputation are. That is because 
there will be less instances for imputing missing values in one cluster while the 
number of clusters become bigger. In our experiments, for the Abalone dataset (in 
figure 1, (1) to (6)), the best K, that is the number of clusters for K-means algorithm, 
ranges from 25 to 35; while for the Housing dataset (in figure 2, (7) to (12)), the best 
K ranges from 4 to 7. Note that for the large dataset, such as, the dataset abalone in 
Fig.1, the AE increases gradually while in small dataset (for instance, the dataset 
Housing in Fig.2) it increases rapidly. Because the number of instances in each cluster 
will change slightly when the dataset is large and there are more observed information 
for imputing missing values in one cluster. That makes the values of AE for variance 
and distribution function relatively stable compared with the previous imputation 
results. 

These results are consistent with the results obtained by using the G-means 
algorithm in [19]. This means that user can use the G-means algorithm to work out 
the number of clusters, i.e. K, for the dataset at first, and then utilizes our CMI 
algorithm based on the K, in order to deal with the missing value problems on each of 
the cluster. As a consequence, user will be easily to choose an appropriate K for 
clustering in advance, without degrading the system performances for missing value 
imputation. 

5   Conclusions and Future Work 

In this paper, we propose a clustering-based non-parametric kernel-based imputation 
method, called CMI, for dealing with missing values, which is presented in target 
attribute in data preprocessing. Extensive experimental results have demonstrated the 
effectiveness of CMI method in making inference for variance and the distribution 
function after clustering. In practice, datasets usually present missing values in 
conditional attributes and class attributes, which makes the problem of missing value 
imputation more sophisticated. In our future work, we will deal with this problem. 
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Abstract. This paper considers the problem of viscous dissipation in power-law 
fluid flow through a tube of circular cross section. The solution to the problem 
is obtained by a series expansion about the complete eigenfunctions system of a 
Sturm-Liouville problem. The eigenfunctions and eigenvalues of this Sturm-
Liouville problem are obtained by Galerkin’s method. The Graetz problem is 
also considered. Numerical examples are given for a viscous fluid with unit 
Brinkman number. 

Keywords: dissipation, power-law, eigenfunction, Graetz problem, Galerkin. 

1   Introduction 

The problem of laminar forced convection in circular tubes is important in many 
practical applications. As an example we mention the transport of petroleum products, 
the polymer processing, certain technological process from the chemical industry and 
food industry. 

Even in the case of laminar flow, the determination of the exact solution of the 
problem is very difficult. In many situations we consider the easier problem of 
determining the temperature in the case when the temperature doesn't depend on time 
(the Graetz-Nusselt problem). In this case the approximate solution of the problem is 
searched by using the simplified hypothesis: 

-the physical properties of the fluid don't depend on the temperature; 
-the heat transfer by conduction in the axial direction is negligible compared to 

both the convection in the axial direction and the conduction in the radial direction. 

In the literature of the laminar forced convection in circular tubes, the effect of 
viscous dissipation is almost always neglected, Indeed, this effect is usually 
considered to be relevant in two cases: the flow in capillary tubes and the flow of very 
viscous fluids. Anyway, in the case of power-law fluids the neglection of viscous 
dissipation doesn't simplify the problem. 

The problem of laminar forced convection in circular tubes has constituted the 
object of many researches. Various approximate methods have been proposed for the 
determination of the solution: the separation of variables method, the Laplace 
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transform, Galerkin's method, the finite difference method, the finite integral 
transform method, the Bessel series and power series expansions of Kummer function 
[20], [6], [18], [10], [8], [12], [13], [14], [9]. 

The Graetz problem [8] describes the temperature field in fully-developed laminar 
flow in a circular tube where the wall temperature profile is a step function [17]. The 
first approximate solution of this problem was obtained by the separation of variable 
method and by the power series method [8], [17]. As well as the power series method 
other methods were also proposed  for the determination of the eigenvalues of the 
Graetz problem [11], [20], [4], [9]. 

The temperature distribution of molten polymer flows inside a semi-infinite 
circular straight tube with viscous dissipation is related to the problem of viscous 
dissipation of power-law fluids [2], [15]. The equation which describes the 
phenomena is of parabolic and nonlinear type. A mathematical analysis of this 
equation and a finite element analysis are given in [21], [22]. 

In this article we present a unified approach to some problems concerning the 
laminar forced convection in circular tubes for power-law fluids: the viscous 
dissipation and the Graetz problem with Dirichlet and Neumann boundary conditions. 
By using the separation of variables method the solutions of these problems are 
obtained under the form of Fourier series by the eigenfunction complete system of 
some Sturm-Liouville problems. We use Galerkin's method to determine the 
eigenfunctions and the eigenvalues of these Sturm-Liouville problems. Thus, we use 
Bessel's functions of first kind as functions of coordinates. 

Now we will consider the laminar flow of power-law fluid through a tube of 
circular cross section. At the entrance of tube the temperature of fluid is 0T . The flow 

is slow thus we can neglect the heat transfer by conduction in flow direction. At the 
same time we will consider that the fluid density ρ , specific heat pC and the heat 

transfer coefficient k  are constant. The flow is related to a polar spatial coordinate 
system, the Ox  axis is along the tube axis, the radial coordinate will be considered to 
be r and R is the radius of the tube. For the fluid velocity in the cross section we will 
consider the expression 
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where mv  is the mean fluid velocity, ( ) νν /1+=N  where ν  is a rheological constant 

of the fluid. For Newtonian fluids 1=ν , for Bingham expanded fluid 1<ν  and for 
Bingham pseudo plastic fluid 1>ν . 

Given those conditions the energy equation is [20]: 
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where K is a rheological constant of the fluid. 
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The aim of this article is to establish an approximate solution of equation (2), 
which verifies certain initial and boundary conditions. 

The plan of the article is: we formulate the mathematical problem in section two, 
section three contains the algorithm for the determination of eigenvalues and 
eigenfunctions (for the Sturm-Liouville problem obtained by method of separation of 
variables) with Galerkin’s method, section four contains the approximate solution of 
the problems, section five contains the case of Newtonian fluid and in the last section 
we present some numerical results. Conclusions and future works are presented at the 
end of the article. 

2   The Mathematical Problem 

We consider the equation (2) and some initial and boundary conditions. 

2.1   Viscous Dissipation with Dirichlet Boundary Condition 

In this case we study the viscous dissipation in the laminar flow of a power-law fluid 
through a tube of circular cross section. At the entrance of the tube the fluid 

temperature is 0T  (condition (3)) and the wall of the tube has the same temperature 
(condition (5)). 

We associate to equation (2) the initial condition 

0,0 TTx ==  (3) 

and the boundary conditions 

)0(,0,0 >=
∂
∂= x

r

T
r  (4) 

)0(,, 0 >== xTTRy  (5) 

Condition (4) specifies that at the axis of the tube the temperature has a maximum 
point. It is suitable to rewrite the equation (2) and the initial and boundary conditions 
(3), (4), (5) in dimensionless form. In this case we have to determine the solution of 
the equation (2) with the conditions (3), (4) and (5). With the transformation group 
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the equation (2) and the boundary conditions (3), (4), (5) become: 
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)0(,0,0 >=
∂
∂= ψ
η
θη  (9) 

)0(,0,1 >== ψθη  (10) 

In equation (7) the coefficient BrN  is the Brinkman number [20], [24]. 

It is easy to demonstrate that a particular solution of equation (7) which verifies the 
conditions (9) and (10) is: 
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The change of function 

1θθ += u  (12) 

leads to the equation 
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unknown function u satisfies the conditions (9) and (10). The initial condition (8) is 
replaced by: 

1,0 θψ −== u  (14) 

Thus the problem which has to be solved consist of the equation (13), the initial 
condition (14) and the boundary conditions (9) and (10). 

2.2   Viscous Dissipation with Neumann Boundary Condition 

In this case we study the viscous dissipation in the laminar flow of a power-law fluid 
through a tube of circular cross section. At the entrance of the tube the fluid 
temperature is 0T  and the heat flux vanish at the wall. So the condition (5) is replaced 

by 
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With the same transformation group (6) this condition becomes 
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The problem which has to be solved in this case consists of the equation (7) and the 
conditions (8), (9) and (16). It is easy to demonstrate that a particular solution of 
equation (7) which verifies the conditions (9) and (16) is: 
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The change of function 

2θθ += u  (18) 

leads to the equation (13) and the unknown function u will satisfy the conditions (9) 
and (16); the initial condition (8) is replaced by: 

2,0 θψ −== u  (19) 

2.3   The Graetz Problem with Dirichlet Boundary Condition 

In this case the viscous dissipation is neglected. At the entrance of the tube the fluid 
temperature is 0T  and the temperature of the wall is 01 TT ≠ . The energy equation is 
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and the unknown function T satisfies the conditions (3), (4) and 

)0(,, 1 >== xTTRy  (21) 

with 01 TT ≠ . 

With the transformation group 
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the equation (20) and the conditions (3), (4) and (21) become: 
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In this case a particular solution of the equation (23) which verifies the conditions 
(25) and (26) is 

13 =θ  (27) 

The change of function 

3θθ += u  (28) 
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leads to the problem 
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2.4   The Graetz Problem with Neumann Boundary Condition 

In this case the viscous dissipation is neglected. At the entrance of the tube the fluid 
temperature is 0T  and the heat flux is constant at the wall. Thus the problem which 

has to be solved consists of equation (20) and the conditions (3), (4) and 
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where 0≠q  is the constant wall heat flux. 

With the transformation group 
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the equation (20) becomes the equation (23), the conditions (3), (4) become (24), (25) 
and the condition (33) becomes: 
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η
θη R . (35) 

In this case a particular solution of the equation (23) which verifies the conditions 
(25) and (33) is 
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The change of function 

4θθ += u  (37) 

leads to the problem 
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4,0 θθψ −==  (39) 
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The four problems above are thus reduced to the determination of the solution of 
the mixed problem of parabolic type: 
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The type of equation (42) and boundary conditions (44) and (45), (46) allow us to 
apply the method of separation of variables in order to determine the function u. By 
this method the function u is obtained under the form: 
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where nΦ  and nλ  are the eigenvalues and the eigenfunctions of Sturm-Liouville 

problem: 
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or of Sturm-Liouville problem: 
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0,1;0
d

d
,0 =Φ==Φ= η

η
η  (51) 

For the statements above we draw the conclusion that solving the problem 2.1, 2.2, 
2.3 and 2.4 is reduced to solving the Sturm-Liouville problem (48), (49) and (50), 
(51). In order to determine the eigenfunctions and the eigenvalues from the formula 
(47) we will use Galerkin's method in the next paragraph. 

3   The Application of Galerkin’s Method 

For the determination of eigenfunctions and eigenvalues of Sturm-Liouville problem 
(48), (49) we will apply Galerkin’s method. Galerkin's method is one of the most used 
methods for the determination of the eigenvalues and the eigenfunctions of the Sturm-
Liouville problem. The key of this method consist in determining the projections of 
the eigenfunctions on certain finite dimensional linear subspace. Next these linear 
subspace will be generated by the Bessel functions of first kind. 

In order to apply Galerkin's method we consider the bilinear forms ( )⋅⋅ ,a  and 
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We look for the eigenpair ( )Φ,λ  which satisfies 
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For the problem (50), (51) the bilinear forms ( )⋅⋅ ,a  and ( )⋅⋅ ,b  are defined on 
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In order to solve (50), (51) we look for the eigenpair ( )Φ,λ  which satisfies 
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(53) and (55) are called a variational formulation of (48), (49) and (50), (51) 
respectively [5]. 
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We look for the solution of (53) and (55) under the approximate form 
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where ∗∈ Nn  is the approach level of function Φ  and ( ) ∗∈Nkkϕ  is a complete 

system of functions in 1H  and H
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 respectively. For the problem (49) the functions 
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The unknown coefficients nkak ,1, =  are determined if we give the conditions 

( ) ( )jnjn ba ϕλϕ ,, 2 Φ⋅=Φ , nj ,1= . (58) 

By applying these conditions we obtain the linear algebraic system in unknown 
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where 

( ) nkja jkkj ,1,,, =−= ϕϕα , (60) 

( ) nkjb jkkj ,1,,, == ϕϕβ . (61) 

Obviously the system (59) has the trivial solution. This solution can't be used 
because it leads us to the trivial eigenfunction (see formula (56)) which is in 
contradiction with the condition (55). This condition implies that the system (59) has 
also nontrivial solutions. Thus, we obtain the equation 

02 =+≡Δ BAn λ , (62) 

where A and B are the matrix ( )
njkkjA

,1, =
= α , ( )

njkkjB
,1, =

= β . 

The solutions of the equations (62) represent the approximate values, for the n 

approach level, for the eigenvalues
2
1λ ,

22
2 ,, nλλ L . 

The solutions of equation (62) are difficult to be obtained under this form. 
Consequently, through elementary transformations of determinant nΔ  this equation 

takes the form: 

02 =− nIC λ , 
(63) 

where nI  is the identity matrix of  n order. 
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In the following we will use the complete system of functions ( ) ∗∈Nkkϕ  

( ) ( )ημηϕ ⋅= kk J 0  (64) 

where 0J  is the Bessel function of the first kind and zero order and ∗∈ Nkk ,μ are 

the roots of equation:  

( ) 01 =μJ  (65) 

for the problem (53) and the equation 

( ) 00 =μJ  (66) 

for the problem (55). 
The integrals which appear in formula (52) are calculated with a quadrature 

formula. The eigenvalues of the Sturm-Liouville problem obtained through this 
method are presented in the next section. 

The eigenfunctions of the problems (53), (55) are the analytical form 
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where ( ) niccc inii ,1,,,, 21 =L  are the eigenvectors of matrix BA 2λ+ . 

4   The Approximate Solution of the Problems 

The unknown function u, for the n level of approximation of Galerkin’s method, is 
obtained from (15) and (56): 
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The coefficients nici ,1, =  from (68) are determined by using the condition (45) 

and by considering that the solutions nii ,1, =Φ  of the Sturm-Liouville problem are 

orthogonal with weight ( )Nηη −1  on [ ]1,0 . Because the functions nii ,1, =Φ  are not 

obtained exactly, we prefer to use the orthogonality with weight η  of Bessel 

functions on [ ]1,0 . 

Thus, for the n level of approximation, the constants nici ,1, =  are determined by 

the resolution of the linear algebraic system: 
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The final solution of the problem is obtained now by using the relations (12), (28) 
(37) and (68): 
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5   The Case of Newtonian Fluid 

In the case of Newtonian fluid ( 1=ν ) the eigenfunctions can be obtained exactly by 
using the confluent hypergeometric function as follows. In the equation 
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we make the change of variables 
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Thus the equation (71) becomes: 

( ) 0
2

1

4
1

2

2

=⎟
⎠
⎞

⎜
⎝
⎛ −+−+ ϕλ

τ
ϕτ

τ
ϕτ

d

d

d

d
. (73) 

This is the confluent hypergeometric equation [1]. 

The bounded solution of this equation is ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −= τλτϕ ,1,

42

1
11F  where 11 F  is the 

Kummer’s function [1]. Thus the solution of the equation (71) is: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=Φ

−
2

11
2

2

,1,
42

1 ληλη
ηλ

Fe . (74) 

From the Dirichlet boundary condition 

( ) 01 =Φ  (75) 

we obtain the transcendent equation 

0,1,
42

1
11 =⎟

⎠
⎞

⎜
⎝
⎛ − λλ

F , (76) 

equation from which the eigenvalues of Sturm-Liouville problem are determined. 
 



150 T. Boaca and I. Boaca 

For the eigenfunctions of Sturm-Liouville problem we have the integral 
representation 

( ) ( )∫
∞

−− ⋅⋅⋅⋅⋅⋅
⎟
⎠
⎞

⎜
⎝
⎛ +Γ

=Φ
0

0
2

1

4
2

2

d2

2

1

4

ttJte
e t λη
λ

η
λ

λη

 (77) 

obtained from the integral representation of Kummer’s function [7]. In (77) Γ  is the 
Euler’s gamma function. 

From (77) is easily obtained the inequality: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤Φ

2
exp

2ληη  (78) 

The determination of the coefficients from the variational method: 

a) Dirichlet boundary condition. Taking into account that 

( ) ( ) ( )∫
⎪⎩

⎪
⎨
⎧

=

≠
=

1

0

2
1

00 ,
2

1

,0
d

jkJ

jk
JJ

k
jk ημ

ηημημη , (79) 

the coefficients kjkj βα ,  are calculated with the formulas: 

( )⎪⎩

⎪
⎨
⎧

=−

≠
=

jkJ

jk

k
kj ,

2

1

,0

2
1 ημ

α , (80) 

( ) ( )

( ) ( ) ( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=−

≠−

=

∫

∫
1

0

00
32

1

1

0

00
3

,d
2

1

   ,                       d

jkJJJ

jkJJ

jkk

jk

kj

ηημημηημ

ηημημη

β . (81) 

b) Mixed boundary condition ( ) ( ) 011 / =Φ⋅+Φ β . In this case we take 

( ) ( )ημηϕ kk J0=  (82) 

where kμ  are the roots of the equation 

( ) ( ) 010 =⋅⋅+ μμβμ JJ . (83) 
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Because we have [19] 

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

=
⋅
+

≠
=∫ jkJ

jk

JJ
k

k
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2
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d 2
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1

0

00 μ
μ

μβηημημη , (84) 

and [16] 
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we obtain the formulas: 
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c) Neumann boundary condition. In this case the formulas are determined from 
(81) and (82) where we consider 0=β : 

njjj ,1,11 == αα , 

( )⎪⎩

⎪
⎨
⎧

==−

=≠
=

njkjkJ

njkjk
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2
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2 μμ
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(88) 
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(89) 
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6   Numerical Results 

As an example we will consider a fluid with unit Brinkman number. The 
coefficients given by (60), (61) are obtained by a numerical quadrature procedure 
[23].The eigenvalues of the Sturm-Liouville problem (48), (49) are obtained by 
solving the equation (63) with the use of the procedures BALANC, ELMHES, HQR 
[23]. The eigenfunctions are obtained by solving the system (59) by using the Gauss 
method [23]. The coefficients c from the formula (47) were obtained by solving the 
linear algebraic system (69) with Gauss's method [23]. The eigenvalues of the 
Sturm-Liouville problem (48), (49) are presented in table 1.  

The variation of dimensionless temperature θ  given by (70) is presented in figures 
1-4 for viscous dissipation with Neumann boundary condition and in figures 5-7 for 
viscous dissipation with Dirichlet boundary condition. The reduced radial distance η  
is presented in the abscisse axis and the dimensionless temperature θ  is presented in 
the axis of ordinates. The variation of the dimensionless temperature θ  is presented 
for some values of the dimensionless axial variable ψ . 

The figure 1-4 tell us that the dimensionless temperature θ  increases along the 
tube axis (for some value of radial variable) and with the radial variable (for some 
value of the axial variable). The temperature increase with  ν  for certain value of ψ  
and η . The figure 5-7 tell us that in the case of Dirichlet boundary condition, the 
dimensionless temperature increases along the tube axis and converge asymptotically 
to an expression which doesn't depend on the axial distance. 

 

Fig. 1. Dimensionless temperature profile for Neumann boundary condition, 35.0=ν  
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Fig. 2. Dimensionless temperature profile for Neumann boundary condition, 5.0=ν  

 

 

Fig. 3. Dimensionless temperature profile for Neumann boundary condition, 75.0=ν  
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Fig. 4. Dimensionless temperature profile for Neumann boundary condition, 1=ν  

 

 

Fig. 5. Dimensionless temperature profile for Dirichlet boundary condition, 35.0=ν  
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Fig. 6. Dimensionless temperature profile for Dirichlet boundary condition, 75.0=ν  

 

Fig. 7. Dimensionless temperature profile for Dirichlet boundary condition, 1=ν  
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Fig. 8. Variation of Nusselt number for Neumann boundary condition 

Table 1. Eigenvalue of Sturm-Liouville problem (Neumann boundary condition) 

ν  

0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 

2
nλ  

0 0 0 0 0 0 0 0 

22.427 23.247 23.966 24.602 25.169 25.679 26.141 26.560 

73.102 75.800 78.175 80.283 82.168 83.863 85.395 86.788 

151.783 157.384 162.323 166.712 170.637 174.170 177.366 180.271 

258.414 267.946 276.356 283.832 290.522 296.544 301.993 306.947 

392.974 407.462 420.251 431.622 441.799 450.961 459.253 466.792 

555.452 575.924 593.997 610.070 624.458 637.411 649.135 659.795 

745.840 773.322 797.588 819.170 838.490 855.885 871.630 885.948 

964.136 999.656 1031.02 1058.91 1083.89 1106.38 1126.73 1145.24 

1210.33 1254.91 1294.29 1329.31 1360.66 1388.89 1414.45 1437.69 
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An important similarity criterion in the study of convective heat transfer is the 
Nusselt number. In the study of heat transfer in the thermal-entry regions of 
hidrodynamically developed viscous flows, the computation of the local Nusselt 
number as a function of axial distance is of both practical and theoretical importance, 
deriving from numerous applications of both Newtonian and non-Newtonian fluids. 
This number is calculated with the formula [20]: 

wθθ

η
θ

η
−><

∂
∂⋅

−= =1
2

Nu
 (90) 

where 

( ) ( )

( )∫

∫ −

=><
1

0

1

0

d-1

d1

ηηη

ηηθηη

θ
N

N

 (91) 

is the bulk temperature and wθ  is the wall temperature. In figure 8 we present the 

variation of Nusselt number in function of dimensionless longitudinal variable ψ  and 

some values of parameter ν  for Graetz problem and Neumann boundary condition. 
We find the value 48/11 for the Nusselt number for Newtonian fluids and great values 
of the distance in the direction of the flow. 

7   Conclusions 

In this article we present a unified method for solving some problems concerning the 
laminar forced convection in circular tubes for power-law fluids. The problems are 
reduced to some Sturm-Liouville problems. Galerkin's method is used for solving 
these Sturm-Liouville problems. The Bessel functions of first kind are used in this 
method. We present some numerical examples for a fluid with unit Brinkman number. 
The results were obtained for ten level of approximation from Galerkin's method. We 
observe that the proposed algorithm has a good stability and a good precision. 

The study of the algorithm convergence and the errors estimation will be the 
subject of a future article. 
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and Perturbation Technique (WHEP)
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Abstract. The Wiener-Hermite expansion linked with perturbation
technique (WHEP) was used to solve perturbed non-linear stochastic
differential equations. In this article, the homotopy perturbation method
is used instead of the conventional perturbation methods which gener-
alizes the WHEP technique such that it can be applied on non-linear
stochastic differential equations without the necessity of the presence of
the small parameter. The technique is called homotopy WHEP and is
demonstrated through many non-linear problems.

Keywords: Non-linear stochastic differential equations, Wiener-Hermite
expansion, WHEP technique, Homotopy perturbation.

1 Introduction

Stochastic non-linear differential equations are mathematical models for many
scientific research problems in a variety of applied science and engineering fields.
Searching for exact (if possible) or approximate solutions is an active and im-
portant research area. Many scientists develop numerous methodologies and al-
gorithms for solving such problems.

Since Meecham and his co-workers [1] developed a theory of turbulence involv-
ing a truncated Wiener-Hermite expansion (WHE) of the velocity field, many
authors studied problems concerning turbulence [2-7]. A number of general ap-
plications in fluid mechanics was also studied in [8,9,10]. Scattering problems
attracted the WHE applications through many authors [11-15]. The non-linear
oscillators were considered as an opened area for the applications of WHE as can
be found in [16-22]. There are many applications in boundary value problems
[23,24] and generally in different mathematical studies [25,28].

The application of the WHE aims at finding a truncated series solution to the
solution process of differential equations. The truncated series are composed of
two major parts; the first is the Gaussian part which consists of the first two
terms, while the rest of the series constitute the non-Gaussian part. In non-linear
cases, there exists always difficulties of solving the resultant set of deterministic
integro-differential equations obtained from the applications of a set of compre-
hensive averages on the stochastic integro-differential equation resulted after the

M.L. Gavrilova and C.J.K. Tan (Eds.): Trans. on Comput. Sci. I, LNCS 4750, pp. 159–180, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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direct application of WHE. Many authors introduced different methods to face
these obstacles. Among them, the WHEP technique was introduced in [21] using
the perturbation method to solve non-linear problems.

In this paper, we generalize the WHEP algorithm using the homotopy pertur-
bation. Describing such a general algorithm enlarges its applicability and bene-
fits among users of non-linear models since through which approximate solutions
can be got, mainly the average and some useful statistical moments, that de-
scribe the stochastic applied problem efficiently according to the required order of
approximation.

The WHEP technique is described in section 2 and is applied to a non-linear
problem in subsection 2.1. The homotopy perturbation is briefly summarized
in section 3 with an example in 3.1 and is extended to non-linear systems in
section 4 with an illustrative application in subsection 4.1. Section 5 has the full
description of the proposed homotopy WHEP technique. An illustrative case-
study is introduced in subsection 5.1 with giving an example in 5.1.1 and its
modification in 5.1.2.

2 WHEP Technique

The WHE method utilizes the Wiener-Hermite (WH) polynomials which are the
elements of a complete set of statistically orthogonal random functions [29].The
Wiener-Hermite polynomial H(i)(t1, t2, ..., ti) satisfies the following recurrence
relation:

H(i)(t1, t2, ..., ti) = H(i−1)(t1, t2, ..., ti−1)H(1)(ti)

−
i−1∑

m=1

H(i−2)(ti1 , ti2 , ..., tii−2) · δ(ti−m − ti), i ≥ 2 (1)

where

H(0) = 1,

H(1)(t) = n(t),
H(2)(t1, t2) = H(1)(t1).H(1)(t2) − δ(t1 − t2),

H(3)(t1, t2, t3) = H(2)(t1, t2).H(1)(t3) − H(1)(t1).δ(t2 − t3)
−H(1)(t2).δ(t1 − t3),

H(4)(t1, t2, t3, t4) = H(3)(t1, t2, t3).H(1)(t4) − H(2)(t1, t2).δ(t3 − t4)
−H(2)(t1, t3).δ(t2 − t4) − H(2)(t2, t3).δ(t1 − t4), (2)

in which n(t) is the white noise with the following statistical properties

En(t) = 0, En(t1).n(t2) = δ(t1 − t2) (3)
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where δ(−) is the Dirac delta function and E denotes the ensemble average
operator. The Wiener-Hermite set is a statistically orthogonal set, i.e.

E · H(i) · H(j) = 0 ∀ i �= j. (4)

The average of almost all H functions vanishes, particularly,

E · H(i) = 0 for i ≥ 1. (5)

Due to the completeness of the Wiener-Hermite set, any random function
G(t; ω) can be expanded as

G(t; ω) = G(0)(t)+

∞∫

−∞
G(1)(t; t1)H(1)(t1)dt1

+

∞∫

−∞

∞∫

−∞
G(2)(t; t1, t2)H(2)(t1, t2)dt1dt2

+

∞∫

−∞

∞∫

−∞

∞∫

−∞
G(3)(t; t1, t2, t3)H(3)(t1, t2, t3)dt1dt2dt3 + ... (6)

where the first two terms are the Gaussian part of G(t; ω). The rest of the terms
in the expansion represent the non-Gaussian part of G(t; ω). The average of
G(t; ω) is

μG = EG(t; ω) = G(0)(t) (7)

The covariance of G(t; ω) is

Cov(G(t; ω), G(τ ; ω)) = E(G(t; ω) − μG(t))(G(t; ω) − μG(τ))

=

∞∫

−∞
G(1)(t; t1)G(1)(τ, t1)dt1

+2

∞∫

−∞

∞∫

−∞
G(2)(t; t1, t2)G(2)(τ, t1, t2)dt1dt2

+2

∞∫

−∞

∞∫

−∞

∞∫

−∞
G(3)(t; t1, t2, t3)[G(3)(τ, t1, t2, t3)

+G(3)(τ, t1, t3, t2) + G(3)(τ, t2, t3, t1)dt1dt2dt3 + ... (8)
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The variance of G(t; ω) is

V arG(t; ω) = E(G(t; ω) − μG(t))2

=

∞∫

−∞
[G(1)(t; t1)]2dt1 + 2

∞∫

−∞

∞∫

−∞
[G(2)(t; t1, t2)]2dt1dt2

+2

∞∫

−∞

∞∫

−∞

∞∫

−∞
[G(3)(t; t1, t2, t3)]2dt1dt2dt3

+2

∞∫

−∞

∞∫

−∞

∞∫

−∞
[G(3)(t; t1, t2, t3)G(3)(t, t1, t3, t2)]dt1dt2dt3

+2

∞∫

−∞

∞∫

−∞

∞∫

−∞
[G(3)(t; t1, t2, t3)G(3)(t, t2, t3, t1)dt1dt2dt3 + ... (9)

The WHE method can be elementary used in solving stochastic differential
equations by expanding the solution process as well as the stochastic input pro-
cesses via the WHE. The resultant equation is more complex than the original
one due to being a stochastic integro-differential equation. Taking a set of en-
semble averages together with using the statistical properties of the WH poly-
nomials, a set of deterministic integro-differential equations are obtained in the
deterministic kernels G(i)(t; ω), i = 0, 1, 2, .... To obtain approximate solutions
for these deterministic kernels, one can use perturbation theory in the case of
having a perturbed system depending on a small parameter, say, t. Expanding
the kernels as a power series of t, another set of simpler iterative equations in
the kernel series components are obtained. This is the main algorithm of the
WHEP technique. The technique was successfully applied to several nonlinear
stochastic equations, see [19,21,22,24]. The following is an illustrative example.

2.1 Illustrative Example

Let us consider the nonlinear stochastic partial differential equation:

∂u(x, t; ω)
∂t

=
∂2u

∂x2 − ε · u2 + σ · n(x); (x, t) ∈ (0, L) × (0, ∞), (10)

with u(0, t) = 0, u(L, t) = 0 and u(x, 0) = φ(x), where n(x) is the white noise
process and ω is a random outcome of a triple probability space (Ω, B, P ) where
Ω is a sample space, B is a σ-algebra associated with Ω and P is a probability
measure.

The existence of the solution as a power series in ε is proved in [24]. Searching
for the Gaussian part of the solution process, u(x, t; ω) can be expanded as:

u(x, t; ω) = u(0)(x, t)+

∞∫

−∞
u(1)(x, t; x1)H(1)(x1)dx1, (11)
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Substituting in the original equation (10) and taking the necessary averages, we
get the following two deterministic equations:

i)
∂u(0)(x, t)

∂t
=

∂2u(0)

∂x2 − ε[u(0)]2 − ε

∞∫

−∞
[u(1)(x, t; x1)]2dx1,

u(0)(0, t) = 0, u(0)(L, t) = 0 and u(0)(x, 0) = φ(x), (12)

ii)
∂u(1)(x, t; x1)

∂t
=

∂2u(1)

∂x2 − 2εu(0)u(1) + σδ(x − x1),

u(1)(0, t; x1) = 0, u(1)(L, t; x1) = 0 and u(1)(x, 0; x1) = 0, (13)

Applying the perturbation technique, the deterministic kernels can be repre-
sented in first order approximation as:

u(0) = u
(0)
0 + εu

(0)
1 , (14)

u(1) = u
(1)
0 + εu

(1)
1 , (15)

Substituting in the previous set of equations (12) and (13), we get the following
equations:

∂u
(0)
0 (x, t)
∂t

=
∂2u

(0)
0

∂x2

u
(0)
0 (0, t) = 0, u

(0)
0 (L, t) = 0 and u

(0)
0 (x, 0) = φ(x), (16)

∂u
(0)
1 (x, t)
∂t

=
∂2u

(0)
1

∂x2 − [u(0)
0 ]2−

∞∫

−∞
[u(1)

0 (x, t; x1)]2dx1,

u
(0)
1 (0, t) = 0, u

(0)
1 (L, t) = 0 and u

(0)
1 (x, 0) = 0, (17)

∂u
(1)
0 (x, t; x1)

∂t
=

∂2u
(1)
0

∂x2 + σδ(x − x1)

u
(1)
0 (0, t; x1) = 0, u

(1)
0 (L, t; x1) = 0 and u

(1)
0 (x, 0; x1) = 0, (18)

∂u
(1)
1 (x, t; x1)

∂t
=

∂2u
(1)
1

∂x2 − 2u
(0)
0 u

(1)
0

u
(1)
1 (0, t; x1) = 0, u

(1)
1 (L, t; x1) = 0 and u

(1)
1 (x, 0; x1) = 0. (19)

The solution is to evaluate u
(0)
0 and u

(1)
0 first using the separation of variables

and the eigenfunction expansion respectively and then computing the other two
kernels independently using the eigenfunction expansion. The final results are:

E · u(x, t) = u
(0)
0 (x, t) + εu

(0)
1 (x, t), (20)
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V ar u(x, t) =

∞∫

−∞
[u(1)

0 (x, t; x1)]2dx1 + 2ε2

∞∫

−∞
[u(1)

0 u
(1)
1 dx1. (21)

The WHEP technique can be applied on linear or non-linear perturbed sys-
tems described by ordinary or partial differential equations. The solution can be
modified in the sense that additional parts of the Wiener-Hermite expansion can
always be taken into considerations and the required order of approximations
can always be made. It can even be implemented through a package if it is coded
in some sort of symbolic languages.

3 The Homotopy Perturbation Method (HPM)

In this technique [30-33], a parameter p ∈ [0, 1] is embedded in a homotopy
function v(r, p) : φ × [0, 1] → � which satisfies

H(v, p) = (1 − p)[L(v) − L(u0)] + p[A(v) − f(r)] = 0 (22)

where u0 is an initial approximation to the solution of the equation

A(u) − f(r) = 0, r ∈ φ (23)

with boundary conditions

B(u,
∂u

∂n
) = 0, r ∈ Γ (24)

in which A is a nonlinear differential operator which can be decompose into a
linear operator L and a non-linear operator N, B is a boundary operator, f(r) is
a known analytic function and Γ is the boundary of φ. The homotopy introduces
a continuously deformed solution for the case of p = 0, L(v) − L(u0) = 0, to the
case of p = 1, A(v) − f(r) = 0, which is the original equation (23). This is the
basic idea of the homotopy method which is to deform continuously a simple
problem (and easy to solve) into the difficult problem under study [34].

The basic assumption of the HPM method is that the solution of the original
equation (23) can be expanded as a power series in p as:

v = v0 + pv1 + p2v2 + p3v3 + ... (25)

Now, setting p = 1, the approximate solution of equation (23) is obtained as:

u =lim
p→1

v = v0 + v1 + v2 + v3 + ... (26)

The rate of convergence of the method depends greatly on the initial approxi-
mation u0 which is considered as the main disadvantage of HPM.

It has to be noted that HPM is a special case of homotopy analysis method
(HAM) propounded by Liao in 1992 [35]. The HAM was systematically described
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in Liao’s book in 2003 [36] and was applied by many authors in [37-40]. The
disadvantages of HPM can be overcome by using the HAM method that possesses
auxiliary parameters and functions which can control the convergence of the
obtained series solution.

The idea of the imbedded parameter can be utilized to solve non-linear prob-
lems by imbedding this parameter to the problem and then forcing it to be
unity in the obtained approximate solution if converge can be assured. A simple
technique which enables the extension of the applicability of the perturbation
methods from small value applications to general ones.

3.1 Illustrative Example

Consider the mixed non-linear stochastic problem:

..
x (t; ω) + w2x + ε1x

2 + ε2x
3 = F (t; ω), t ∈ [0, T ] (27)

under stochastic excitation F (t; ω) with deterministic initial conditions

x(0) = x0,
.
x (0) =

.
x0 .

In this case, the following data (w.r.t. homotopy perturbation) can be extracted:

A(x) =
..
x +w2x + ε1x

2 + ε2x
3, L(x) =

..
x +w2x,

N(x) = ε1x
2 + ε2x

3, f(r) = F (t; ω).

The homotopy function takes the following form:

H(v, p) = (1 − p)[L(v) − L(u0)] + p[A(v) − f(r)] = 0.

or equivalently,

L(v) − L(u0) + p[L(u0) + ε1v
2 + ε2v

3 − F (t; ω) = 0. (28)

Letting v = v0 + pv1 + p2v2 + p3v3 + ..., substituting in equation (28) and
equating the equal powers of p in both sides of the equation, one can get the
following results:

i) L(v0) = L(y0), in which one may consider the following simple solution:

v0 = y0 y0(0) =
.
x0,

.
y0 (0) =

.
x0 .

ii) L(v1) = F (t; ω) − L(v0) − ε1v
2
0 + ε2v

3
0 , v1(0) = 0,

.
v1 (0) = 0.

iii) L(v2) = −2ε1v0v1 − 3ε2v
2
0v1, v2(0) = 0,

.
v2 (0) = 0.

iv) L(v3) = −ε1(v2
1 + 2v0v2 − 3ε2(v2

0v2 + v0v
2
1), v3(0) = 0,

.
v3 (0) = 0.

v) L(v4) = −2ε1(v0v3 + v1v2) − ε2(6v0v1v2 + 3v2
0v3 + v3

1), v4(0) = 0,
.
v4 (0) = 0.
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The approximate solution is

x(t; ω) =lim
p→1

v = v0 + v1 + v2 + v3 + ...

which can be considered to any approximation order.
One can notice that the algorithm of the solution is straight forward and that

many flexibilities can be made. For example, we have many choices in guessing
the initial approximation together with its initial conditions. For zero initial
conditions, we can choose v0 = 0 which leads to:

x(t; ω) ∼= x4 = v0 + v1 + v2 + v3 + v4

=
1
w

t∫

0

F (s; ω) sin w(t − s)ds − ε1

w

t∫

0

v2
1(s; ω) sin w(t − s)ds

=
ε2

w

t∫

0

v3
1(s; ω) sin w(t − s)ds (29)

that is a bad approximation as a fourth order one. In spite of this fact, the
approximations can be simply modified, especially when using symbolic language
manipulator , or the initial guess can be changed to get better results.

We have to notice that ε1 and ε2 are just deterministic scales and can take
any values. Also, we can use the approximate solution formula to compute any
required approximate statistical solution moments, for example the average and
the covariance.

4 HPM Applied to Simultaneous Systems

The homotopy perturbation technique can be applied to a system of non-linear
differential equations. Let us have the following coupled system

L1(x) + N1(x, y) = F1(x, y)
L2(y) + N2(x, y) = F2(x, y) (30)

where L1 and L2 are linear differential operators and N1 and N2 are non-linear
operators. The homotopy functions can be constructed as follows:

H1 = L1(v) − L1(ϕ0) + p[L1(ϕ0) + N1(v, u) − F1(v, u)] = 0

H2 = L2(u) − L2(φ0) + p[L2(φ0) + N2(v, u) − F2(v, u)] = 0

Letting
v = v0 + pv1 + p2v2 + p3v3 + ... (31)

and
u = u0 + pu1 + p2u2 + p3u3 + ... (32)
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and then substituting in the original equations (30), enables getting iterative
equations in the unknowns vi and ui. The solutions are got as

x(t) = lim
p→1

v = v0 + v1 + v2 + v3 + ...

y(t) = lim
p→1

u = u0 + u1 + u2 + u3 + ... (33)

4.1 Illustrative Example

Let us solve

..
x +w2x + ε1y

2 = F1(x, y)
..
y +w2y + ε2x

2 = F2(x, y) (34)

The homotopy functions take the following form:

L1(v) − L1(ϕ0) + p[L1(ϕ0) + N1(v, u) − F1(v, u)] = 0

L2(u) − L2(φ0) + p[L2(φ0) + N2(v, u) − F2(v, u)] = 0 (35)

where

L1(x) =
..
x +w2x,

L2(y) =
..
y +w2y,

N1(x, y) = ε1y
2,

N2(x, y) = ε2x
2, (36)

and ϕ0 and φ0 are arbitrary functions as before. At p = 0, we get v = ϕ0 and
u = φ0 satisfying any initial conditions in the original equations. At p = 1, we
get the solutions of the original equations (34). Making the basic assumptions,
substituting in the homotopy functions and equating the equal powers of p in
both sides of the equations, we get the following iterative equations:

i) L1(v0) − L1(ϕ0) = 0 ⇒ v0 = ϕ0, v0(0) = x0,
.
v0 (0) =

.
x0,

L2(u0) − L1(φ0) = 0 ⇒ u0 = φ0, u0(0) = y0,
.
u0 (0) =

.
y0 .

ii) L1(v1) + L1(ϕ0) + ε1u
2
0 = 0, v1(0) = 0,

.
v1 (0) = 0,

L2(u1) + L2(φ0) + ε2v
2
0 = 0, u1(0) = 0,

.
u1 (0) = 0.

iii) L1(v2) + 2ε1u0u1 = 0, v2(0) = 0,
.
v2 (0) = 0,

L2(u2) + 2ε2v0v1 = 0, u2(0) = 0,
.
u2 (0) = 0.

iv) L1(v3) + ε1(2u0u2 + u2
1) = 0, v3(0) = 0,

.
v3 (0) = 0,

L2(u3) + ε2(2v0v2 + v2
1) = 0, u3(0) = 0,

.
u3 (0) = 0.

and so on.
Solving this set of equations iteratively, one can get the approximate solutions

to any approximation order.
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We can generalize the previous technique to n equations in the form

Lk(xk) + Nk(x1, x2, ..., xn) = Fk(x1, x2, ..., xn), k = 1, 2, 3, ..., n (37)

and construct the homotopy functions as

Hk = Lk(vk) − Lk(ϕ(k)
0 ) + p[Lk(ϕ(k)

0 ) + Nk(v1, v2, ..., vn)

−Fk(v1, v2, ..., xn)] = 0, k = 1, 2, ..., n (38)

The basic assumptions are

vk = v
(0)
k + pv

(1)
k + p2v

(2)
k + p3v

(3)
k + ..., k = 1, 2, ..., n (39)

and still

xk =lim
p→1

vk = v
(0)
k + v

(1)
k + v

(2)
k + v

(3)
k + ..., k = 1, 2, ..., n (40)

where

v
(0)
k = xk(0),

.
v
(0)
k =

.
xk (0)∀k = 1, 2, ..., n; v

(j)
k = 0,

.
v
(j)
k = 0∀j = 1, 2, ..., n.

5 The Homotopy WHEP Technique

One of the major disadvantages of the WHEP technique is solving only perturbed
problems, i.e. the problem should contain a small parameter. This disadvantage
can be faced by using the HPM instead of the conventional perturbation meth-
ods. Let us call the new link between Wiener-Hermite expansion and homotopy
perturbation technique, the homotopy WHEP.

The algorithm of homotopy WHEP is charted in Fig. 1. Following the flowchart
in Fig. 1, the WH expansion is applied on the stochastic non-linear (or linear) dif-
ferential equation where a complex stochastic integro-differential equation is ob-
tained. We can call this step as the “horizontal expansion” where it is truncated
up to the required order of approximation. Taking the necessary set of averages
of this equation, we get a set of deterministic integro-differential equations in the
deterministic kernels of the WH expansion of the solution process using the sta-
tistical properties of these polynomials. Applying HPM to the previous system of
equations and constructing the necessary homotopy functions, one can get an it-
erative set of equations in the deterministic terms of the basic assumptions. This
step can be called ”vertical expansion” where an order of correction to each order
of approximation can be specified. The approximate solutions of these determin-
istic terms constitute the approximate solution process to the required order of
approximation and correction.

Consequently, the required statistical moments of the solution process are
computed according to their statistical definitions and according to the required
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Fig. 1. The homotopy WHEP algorithm

order of approximation and correction. This algorithm provides a systematic way
for solving stochastic differential equations when convergence is assured.

5.1 Illustrative Case-Study: The Quadratic Nonlinearity

Let us solve
..
x +2wξ

.
x +w2x + εw2x2 = G(t; ω) (41)
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with the deterministic initial conditions x(0) = x0,
.
x (0) =

.
x0. Let

G(t; ω) = G(0)(t)+

∞∫

−∞
G(1)(t; t1)H(1)(t1)dt1

+

∞∫

−∞

∞∫

−∞
G(2)(t; t1, t2)H(2)(t1, t2)dt1dt2

+

∞∫

−∞

∞∫

−∞

∞∫

−∞
G(3)(t; t1, t2, t3)H(3)(t1, t2, t3)dt1dt2dt3 + ... (42)

where G(3)(−) are known kernels (since G(t; ω) is a known function) and

x(t; ω) = x(0)(t)+

∞∫

−∞
x(1)(t; t1)H(1)(t1)dt1

+

∞∫

−∞

∞∫

−∞
x(2)(t; t1, t2)H(2)(t1, t2)dt1dt2

+

∞∫

−∞

∞∫

−∞

∞∫

−∞
x(3)(t; t1, t2, t3)H(3)(t1, t2, t3)dt1dt2dt3 + ... (43)

where x(k)(−) are unknown deterministic kernels.
Applying equations (42) and (43) in equation (41), we get

Lx(0)(t)+

∞∫

−∞
Lx(1)(t; t1)H(1)(t1)dt1+

∞∫

−∞

∞∫

−∞
Lx(2)(t; t1, t2)H(2)(t1, t2)dt1dt2

+

∞∫

−∞

∞∫

−∞

∞∫

−∞
Lx(3)(t; t1, t2, t3)H(3)(t1, t2, t3)dt1dt2dt3 + ...

+εw2[
[
x(0)(t)

]2
+

⎡

⎣
∞∫

−∞
x(1)(t; t1)H(1)(t1)dt1

⎤

⎦
2

+

⎡

⎣
∞∫

−∞

∞∫

−∞
x(2)(t; t1, t2)H(2)(t1, t2)dt1dt2

⎤

⎦
2

+

⎡

⎣
∞∫

−∞

∞∫

−∞

∞∫

−∞
G(3)(t; t1, t2, t3)H(3)(t1, t2, t3)dt1dt2dt3

⎤

⎦
2

+ ...

+2x(0)(t)

∞∫

−∞
x(1)(t; t1)H(1)(t1)dt1+2x(0)(t)

∞∫

−∞

∞∫

−∞
x(2)(t; t1, t2)H(2)(t1, t2)dt1dt2
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+2x(0)(t)

∞∫

−∞

∞∫

−∞

∞∫

−∞
x(3)(t; t1, t2, t3)H(3)(t1, t2, t3)dt1dt2dt3 + ...

+2

∞∫

−∞
x(1)(t; t1)H(1)(t1)dt1·

∞∫

−∞

∞∫

−∞
x(2)(t; t1, t2)H(2)(t1, t2)dt1dt2

+2

∞∫

−∞
x(1)(t; t1)H(1)(t1)dt1·

∞∫

−∞

∞∫

−∞

∞∫

−∞
x(3)(t; t1, t2, t3)H(3)(t1, t2, t3)dt1dt2dt3+...

+2

∞∫

−∞

∞∫

−∞
x(2)(t; t1, t2)H(2)(t1, t2)dt1dt2

·
∞∫

−∞

∞∫

−∞

∞∫

−∞
x(3)(t; t1, t2, t3)H(3)(t1, t2, t3)dt1dt2dt3 + ...]

= G(0)(t)+

∞∫

−∞
G(1)(t; t1)H(1)(t1)dt1+

∞∫

−∞

∞∫

−∞
G(2)(t; t1, t2)H(2)(t1, t2)dt1dt2

+

∞∫

−∞

∞∫

−∞

∞∫

−∞
G(3)(t; t1, t2, t3)H(3)(t1, t2, t3)dt1dt2dt3+... (44)

which is a stochastic integro-differential equation in the deterministic kernels
x(k)(−). The linear operator L is defined as

L(x) =
..
x +2wξ

.
x +w2x (45)

Performing the direct average of equation (44) and using the statistical prop-
erties of the Wiener-Hermite polynomials [35], equation (2) and others, we get

Lx(0)(t)+εw2[
[
x(0)(t)

]2
+

∞∫

−∞

[
x(1)(t; t1)

]2
dt1+2

∞∫

−∞

∞∫

−∞

[
x(2)(t; t1, t2)

]2
dt1dt2

+2

∞∫

−∞

∞∫

−∞

∞∫

−∞
x(3)(t; t1, t2, t3)x(3)(t; t2, t3, t1)dt1dt2dt3

+2

∞∫

−∞

∞∫

−∞

∞∫

−∞
x(3)(t; t1, t2, t3)x(3)(t1, t3, t2)dt1dt2dt3

+

∞∫

−∞

∞∫

−∞

∞∫

−∞

[
x(3)(t; t1, t2, t3)

]2
dt1dt2dt3] = G(0)(t) (46)
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Multiplying equation (44) by H(1)(t7), taking the average with using the sta-
tistical properties of Wiener-Hermite polynomials [35] and letting t7 → t1, we
get

Lx(1)(t, t1) + εw2[2x(0)(t)x(1)(t, t1) + 4

∞∫

−∞
x(1)(t; t1)x(2)(t; t1, t2)dt1dt2

+4

∞∫

−∞

∞∫

−∞
x(2)(t; t2, t3)[2x(3)(t; t1, t2, t3)

+x(3)(t; t2, t3, t1)dt2dt3] = G(1)(t, t1) (47)

Multiplying equation (44) by H(2)(t7, t8), taking the average with using the
statistical properties of Wiener-Hermite polynomials [35] and letting t7 → t1,
t8 → t2, we get

Lx(2)(t, t1, t2) + εw2[2x(0)(t)x(2)(t, t1, t2) + x(1)(t, t1)x(1)(t, t2)

+4

∞∫

−∞
x(2)(t; t1, t3)x(2)(t; t2, t3)dt3 + 2

∞∫

−∞
x(1)(t; t3)x(3)(t; t1, t3, t2)dt3

+2

∞∫

−∞
x(1)(t; t3)x(3)(t; t2, t3, t1)dt3 + 2

∞∫

−∞
x(1)(t; t3)x(3)(t; t1, t2, t3)dt3

+2

∞∫

−∞

∞∫

−∞
x(3)(t; t2, t5, t6)x(3)(t; t1, t6, t5)dt5dt6

+4

∞∫

−∞

∞∫

−∞
x(3)(t; t2, t5, t6)x(3)(t; t1, t5, t6)dt5dt6

+3

∞∫

−∞

∞∫

−∞
x(3)(t; t2, t5, t6)x(3)(t; t5, t6, t1)dt5dt6

+2

∞∫

−∞

∞∫

−∞
x(3)(t; t1, t5, t6)x(3)(t; t2, t6, t5)dt5dt6

+3

∞∫

−∞

∞∫

−∞
x(3)(t; t1, t5, t6)x(3)(t; t5, t6, t2)dt5dt6

+

∞∫

−∞

∞∫

−∞
x(3)(t; t1, t6, t5)x(3)(t; t5, t6, t2)dt5dt6
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+2

∞∫

−∞

∞∫

−∞
x(3)(t; t5, t6, t2)x(3)(t; t5, t6, t1)dt5dt6

+

∞∫

−∞

∞∫

−∞
x(3)(t; t2, t6, t5)x(3)(t; t5, t6, t1)dt5dt6]

= G(2)(t, t1, t2) (48)

Multiplying equation (44) by H(3)(t7, t8, t9), taking the average with using the
statistical properties of Wiener-Hermite polynomials [41] and letting t7 → t1,
t8 → t2, t9 → t3, we get

Lx(3)(t, t1, t2, t3) + Lx(3)(t, t1, t3, t2) + Lx(3)(t, t2, t3, t1)
+εw2[2x(0)(t)[x(3)(t, t1, t2, t3) + x(3)(t, t1, t3, t2) + x(3)(t, t2, t3, t1)]

+4

∞∫

−∞
x(2)(t; t4, t1)x(3)(t; t4, t3, t2)dt4 + 4

∞∫

−∞
x(2)(t; t4, t1)x(3)(t; t4, t2, t3)dt4

+4

∞∫

−∞
x(2)(t; t4, t2)x(3)(t; t4, t3, t1)dt4 + 4

∞∫

−∞
x(2)(t; t4, t2)x(3)(t; t4, t1, t3)dt4

+4

∞∫

−∞
x(2)(t; t4, t3)x(3)(t; t4, t1, t2)dt4 + 4

∞∫

−∞
x(2)(t; t4, t3)x(3)(t; t4, t2, t1)dt4

+4

∞∫

−∞
x(2)(t; t4, t1)x(3)(t; t3, t2, t4)dt4 + 4

∞∫

−∞
x(2)(t; t4, t2)x(3)(t; t3, t1, t4)dt4

+4

∞∫

−∞
x(2)(t; t4, t3)x(3)(t; t1, t2, t4)dt4]

= G(3)(t, t1, t2, t3) + G(3)(t, t1, t3, t2) + G(3)(t, t2, t3, t1) (49)

5.1.1 Illustrative Example-1
Let us take the simple case of evaluating the only Gaussian part of the solution
process of the previous case study, mainly

x(t; ω) = x(0)(t)+

∞∫

−∞
x(1)(t; t1)H(1)(t1)dt1 (50)

In this case, the governing equations are

Lx(0)(t) + εw2[
[
x(0)(t)

]2
+

∞∫

−∞

[
x(1)(t; t1)

]2
dt1] = G(0)(t) (51)
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Lx(1)(t, t1) + εw22x(0)(t)x(1)(t, t1) = G(1)(t, t1) (52)

The ensemble average is
μx(t) = x(0)(t) (53)

and the variance is

σ2
x(t) =

∞∫

−∞

[
x(1)(t; t1)

]2
dt1 (54)

Now, using the homotopy perturbation in solving the governing equations (51)
and (52) respectively and using the results of section 4., we get the following
homotopy functions

Lx
(0)
0 (t) + pLx

(0)
1 (t) + p2Lx

(0)
2 (t) + p3Lx

(0)
3 (t) + ... − L(ϕ0)

+p[L(ϕ0) + εw2[x(0)
0 (t) + px

(0)
1 (t) + p2x

(0)
2 (t) + p3x

(0)
3 (t) + ...]2]

+p[εw2

∞∫

−∞
[x(1)

0 (t; t1) + px
(1)
1 (t; t1) + p2x

(1)
2 (t; t1) + ...]2dt1 − G(0)(t)] = 0 (55)

Lx
(1)
0 (t, t1) + pLx

(1)
1 (t, t1) + p2Lx

(1)
2 (t, t1) + p3Lx

(1)
3 (t, t1) + ... − L(φ0)

+p[L(ϕ0) + 2εw2[x(0)
0 (t) + px

(0)
1 (t) + p2x

(0)
2 (t) + p3x

(0)
3 (t) + ...]

[x(1)
0 (t, t1)+px

(1)
1 (t, t1)+p2x

(1)
2 (t, t1)+p3x

(1)
3 (t, t1)+ ...]−pG(1)(t, t1)] = 0 (56)

Equating the equal powers of p in both sides of equations (55) and (56), we
get the following pairs as iterative equations:

i) Lx
(0)
0 (t) − L(ϕ0) = 0 ⇒ x

(0)
0 (t) = ϕ0, x

(0)
0 (0) = ϕ0(0) = x0,

.
x

(0)
0 (0) =

.
ϕ0 (0) =

.
x0,

Lx
(1)
0 (t, t1) − L(φ0) = 0 ⇒ x

(1)
0 (t, t1) = φ0, x

(1)
0 (0, t1) = φ0(0, t1) = 0,

.
x

(1)
0 (0, t1) =

.

φ0 (0, t1) = 0

ii) Lx
(0)
1 (t) + L(ϕ0) + εw2

[
x

(0)
0 (t)

]2
+ εw2

∞∫
−∞

[
x

(1)
0 (t; t1)

]2
dt1 = G(0)(t),

x
(0)
1 (0) =

.
x

(0)
0 (0) = 0,

Lx
(1)
1 (t, t1) + Lϕ0(t, t1) + 2εw2x

(0)
0 (t)x(1)

0 (t, t1) = G(1)(t, t1),
x

(1)
1 (0, t1) =

.
x

(1)
1 (0, t1) = 0

iii) Lx
(0)
2 (t) + 2εw2x

(0)
0 (t)x(0)

1 (t) + 2εw2
∞∫
−∞

[
x

(1)
0 (t; t1)x

(1)
1 (t; t1)

]
dt1 = 0,

x
(0)
2 (0) =

.
x

(0)
2 (0) = 0,

Lx
(1)
2 (t, t1) + 2εw2[x(0)

0 (t)x(1)
1 (t, t1) + x

(0)
1 (t)x(1)

0 (t, t1)] = 0,

x
(1)
2 (0, t1) =

.
x

(1)
2 (0, t1) = 0,
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iv) Lx
(0)
3 (t) + εw2[2x

(0)
0 (t)x(0)

2 (t) +
[
x

(0)
1 (t)

]2
]

+εw2
∞∫
−∞

[
2x

(1)
0 (t; t1)x

(1)
2 (t; t1) +

[
x

(1)
1 (t; t1)

]2
]

dt1 = 0,

x
(0)
3 (0) =

.
x

(0)
3 (0) = 0,

Lx
(1)
3 (t, t1) + 2εw2[x(0)

0 (t)x(1)
2 (t, t1) + x

(0)
1 (t)x(1)

1 (t, t1) + x
(0)
2 (t)x(1)

0 (t, t1)] = 0,

x
(1)
3 (0, t1) =

.
x

(1)
3 (0, t1) = 0.

and so on, to any required order of correction. We can call this procedure as the
vertical expansion.

It has to be noticed that all previous equations are deterministic linear ones
in the general form

..
x +2wξ

.
x +w2x = F (t) with deterministic initial conditions

x(0) = x0,
.
x (0) =

.
x0which has the general solution

x(t) = x0φ1(t)+
.
x0 φ2+

t∫

0

h(t − s)F (s)ds = 0, (57)

in which we have

h(t) =
1

w
√

1 − ξ2
e−wξ1 sin w

√
1 − ξ2t,

φ1(t) =
ξ +

√
ξ2 − 1

2
√

ξ2 − 1
emt +

−ξ +
√

ξ2 − 1
2
√

ξ2 − 1
eqt

φ2(t) =
1

2w
√

ξ2 − 1
[emt − eqt],

where m = −wξ + w
√

ξ2 − 1, q = −wξ − w
√

ξ2 − 1.
Now, we can compute the average and variance of the solution process us-

ing equations (53) and (54) respectively. The solution process is assumed to be
Gaussian, i.e. x(t) − N(μx(t), σ2

x(t)). This is the first approximation of the so-
lution process. Now, we can go forward to modify the obtained results via the
enhancement of the non-Gaussian part of the solution process, mainly comput-
ing x(2)(t, t1, t2) and other required deterministic kernels of the Wiener-Hermite
expansion of the solution process, we can call this procedure as the horizontal
expansion.

5.1.2 Illustrative Example-2
Let us take the first term in the non-Gaussian part of the solution process of the
previous case study, mainly

x(t; ω) = x(0)(t)+

∞∫

−∞
x(1)(t; t1)H(1)(t1)dt1

+

∞∫

−∞

∞∫

−∞
x(2)(t; t1, t2)H(2)(t1, t2)dt1dt2 (58)
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In this case, the governing equations are

Lx(0)(t) + εw2[
[
x(0)(t)

]2
+

∞∫

−∞
[x(1)(t; t1)]2dt1]

+2εw2

∞∫

−∞

∞∫

−∞
[x(2)(t; t1, t2)]2dt1dt2 = G(0)(t) (59)

Lx(1)(t, t1) + 2εw2x(0)(t)x(1)(t, t1)

+4εw2

∞∫

−∞
x(1)(t; t2)x(2)(t; t1, t2)dt2 = G(1)(t, t1) (60)

Lx(2)(t, t1, t2) + εw2[2x(0)(t)x(2)(t, t1, t2) + x(1)(t, t1)x(1)(t, t2)

+4

∞∫

−∞
x(2)(t; t1, t3)x(2)(t; t2, t3)dt3] = G(2)(t, t1, t2) (61)

The ensemble average is still

μx(t) = x(0)(t) (62)

while the variance is

σ2
x(t) =

∞∫

−∞
[x(1)(t; t1)]2dt1 + 2

∞∫

−∞

∞∫

−∞
[x(2)(t; t1, t2)]2dt1dt2 (63)

Following the same algorithm achieved in the previous example, the following
computational algorithm is obtained:

i) Lx
(0)
0 (t) − L(ϕ0) = 0 ⇒ x

(0)
0 (t) = ϕ0, x

(0)
0 (0) = ϕ0(0) = x0,

.
x

(0)
0 (0) =

.
ϕ0 (0) =

.
x0,

Lx
(1)
0 (t, t1) − L(φ0) = 0 ⇒ x

(1)
0 (t, t1) = φ0, x

(1)
0 (0, t1) = φ0(0, t1) = 0,

.
x

(1)
0 (0, t1) =

.

φ0 (0, t1) = 0
Lx

(2)
0 (t, t1, t2) − L(γ0) = 0 ⇒ x

(2)
0 (t, t1, t2) = γ0,

x
(2)
0 (0, t1, t2) = γ0(0, t1, t2) = 0,

.
x

(2)
0 (0, t1, t2) =

.
γ0 (0, t1, t2) = 0.

ii) Lx
(0)
1 (t) + L(ϕ0) + εw2

[
x

(0)
0 (t)

]2
+ εw2

∞∫
−∞

[
x

(1)
0 (t; t1)

]2
dt1

+2εw2
∞∫
−∞

∞∫
−∞

[x(2)
0 (t; t1, t2)]2dt1dt2 = G(0)(t), x(0)

1 (0) =
.
x

(0)
1 (0) = 0,
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Lx
(1)
1 (t, t1)+Lϕ0(t, t1)+2εw2x

(0)
0 (t)x(1)

0 (t, t1)+4εw2
∞∫
−∞

x
(1)
0 (t; t2)x

(2)
0 (t; t1, t2)dt1dt2

= G(1)(t, t1), x
(1)
1 (0, t1) =

.
x

(1)
1 (0, t1) = 0.

Lx
(2)
1 (t, t1, t2)+Lγ0(t, t1, t2)+εw2x

(1)
0 (t, t1)x

(1)
0 (t, t2)+2εw2x

(0)
0 (t)x(2)

0 (t; t1, t2)

+4εw2
∞∫
−∞

x
(2)
0 (t; t1, t3)x

(2)
0 (t; t2, t3)dt3 = G(2)(t, t1, t2),

x
(2)
1 (0, t1, t2) =

.
x

(2)
1 (0, t1, t2) = 0.

iii) Lx
(0)
2 (t) + 2εw2x

(0)
0 (t)x(0)

1 (t) + 2εw2
∞∫
−∞

[
x

(1)
0 (t; t1)x

(1)
1 (t; t1)

]
dt1

+4εw2
∞∫
−∞

∞∫
−∞

x
(2)
0 (t; t1, t2)x

(2)
1 (t; t1, t2)dt1dt2 = 0, x

(0)
2 (0) =

.
x

(0)
2 (0) = 0,

Lx
(1)
2 (t, t1) + 2εw2[x(0)

0 (t)x(1)
1 (t, t1) + x

(0)
1 (t)x(1)

0 (t, t1)]

+4εw2
∞∫
−∞

[x(1)
0 (t; t2)x

(2)
1 (t; t1, t2) + x

(1)
1 (t; t2)x

(2)
0 (t; t1, t2)]dt2 = 0,

x
(1)
2 (0, t1) =

.
x

(1)
2 (0, t1) = 0.

Lx
(2)
2 (t, t1, t2) + εw2[x(1)

0 (t, t1)x
(1)
1 (t, t2) + x

(1)
1 (t, t1)x

(1)
0 (t, t2)]

+2εw2[x(0)
0 (t)x(2)

1 (t, t1, t2) + x
(0)
1 (t)x(2)

0 (t, t1, t2)]

+4εw2
∞∫
−∞

x
(2)
0 (t; t1, t3)x

(2)
1 (t; t2, t3)dt3

+4εw2
∞∫
−∞

x
(2)
1 (t; t1, t3)x

(2)
0 (t; t2, t3)dt3 = 0, x

(2)
2 (0, t1, t2)

=
.
x

(2)
2 (0, t1, t2) = 0.

iv) Lx
(0)
3 (t) + εw2[2x

(0)
0 (t)x(0)

2 (t)
[
x

(0)
1 (t)

]2
]

+εw2
∞∫
−∞

[
2x

(1)
0 (t; t1)x

(1)
2 (t; t1) +

[
x

(1)
1 (t; t1)

]2
]

dt1

+2εw2
∞∫
−∞

∞∫
−∞

[2x
(2)
0 (t; t1, t2)x

(2)
2 (t; t1, t2) + [x(2)

1 (t; t1, t2)]2dt1dt2 = 0,

x
(0)
3 (0) =

.
x

(0)
3 (0) = 0,

Lx
(1)
3 (t, t1) + 2εw2[x(0)

0 (t)x(1)
2 (t, t1) + x

(0)
1 (t)x(1)

1 (t, t1) + x
(0)
2 (t)x(1)

0 (t, t1)]

+4εw2
∞∫
−∞

[x(1)
0 (t; t2)x

(2)
2 (t; t1, t2) + x

(1)
1 (t; t2)x

(2)
1 (t; t1, t2)

+x
(1)
2 (t; t2)x

(2)
0 (t; t1, t2)dt2 = 0, x

(1)
3 (0, t1) =

.
x

(1)
3 (0, t1) = 0.

Lx
(2)
3 (t, t1, t2)+εw2[x(1)

0 (t, t1)x
(1)
2 (t, t1)+x

(1)
1 (t, t1)x

(1)
1 (t, t2)]+x

(1)
2 (t, t1)x

(1)
0 (t, t2)]

+2εw2[x(0)
0 (t)x(2)

2 (t, t1, t2) + x
(0)
1 (t)x(2)

1 (t, t1, t2) + x
(0)
2 (t)x(2)

0 (t, t1, t2)]

+4εw2
∞∫
−∞

[x(2)
0 (t; t1, t3)x

(2)
2 (t; t2, t3) + x

(2)
1 (t; t1, t3)x

(2)
1 (t; t2, t3)dt3

+4εw2
∞∫
−∞

x
(2)
2 (t; t1, t3)x

(2)
0 (t; t2, t3)dt3 = 0,

x
(2)
3 (0, t1, t2) =

.
x

(2)
3 (0, t1, t2) = 0

and so on, to any required order of correction.
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6 Discussion and Conclusions

In previous works, the WHEP technique proved to be successful in introducing
an approximate solution to some perturbed stochastic differential equations. In
this paper, the use of homotopy perturbation instead of the conventional pertur-
bation theory enlarges the use of WHEP which is now called homotopy WHEP.
The approximate solution is obtained through systematic procedures and can
be improved through two main ways, horizontally through the addition of more
terms in Wiener-Hermite expansion to obtain a modified solution, and vertically
through improving this modified solution via the homotopy perturbation tech-
nique. The technique transforms the stochastic non-linear equation into a set of
deterministic linear equations which can be easily solved iteratively to any order
of approximation through horizontal or vertical ways. The huge developments
in symbolic computations will facilitate the good use of such algorithms.

The use of the homotopy WHEP technique is better than the use of perturba-
tion method alone since the latter produces a set of stochastic linear equations
that is more complex than the original one. The WH expansion is known to
be convergent but the application of HPM may lead to divergence. This disad-
vantage is overcome by using homotopy analysis method (HAM) which can be
studied in future works.
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